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Preface 

This book includes selected papers from VISIGRAPP 2007, the Joint Conference on 
Computer Vision and Computer Graphics, comprising two component conferences, 
namely, the International Conference on Computer Vision Theory and Applications 
(VISAPP) and the International Conference on Computer Graphics Theory and Appli-
cations (GRAPP), held in Barcelona, Spain, during March 8–11, 2007. 

We received quite a high number of paper submissions: 382 in total for both confer-
ences. We had contributions from more than 50 countries in all five continents. This 
confirms the success and global dimension of these jointly organized conferences. After 
a rigorous double-blind evaluation method, a total of 78 submissions were accepted as 
full papers. From those, 18 got selected for inclusion in this book. To ensure the scien-
tific quality of the contributions, these were selected from papers that were evaluated 
with the highest scores by the VISIGRAPP Program Committee members and then they 
were extended and revised by the authors. Special thanks go to all contributors and refe-
rees, without whom this book would not have been possible. 

VISIGRAPP 2007 included four invited keynote lectures, presented by internation-
ally recognized researchers. The presentations represented an important contribution 
to increasing the overall quality of the conference. We would like to express our ap-
preciation to all invited keynote speakers, in alphabetical order: Jake K. Aggarwal 
(The University of Texas at Austin/USA), André Gagalowicz (INRIA/France), Wolf-
gang Heidrich (University of British Columbia/Canada), Mel Slater (Universitat 
Politècnica de Catalunya/Spain). 

We wish to thank all those who supported and helped to organize the conference. 
First and foremost we would like to acknowledge the collaboration from Eurographics 
and CVC - Computer Vision Center. Moreover, on behalf of the conference Organiz-
ing Committee, we would like to thank the authors, whose work mostly contributed to 
a very successful conference, and to the members of the Program Committee, whose 
expertise and diligence were instrumental to the quality of the final contributions. We 
also wish to thank all the members of the Organizing Committee whose work and 
commitment were invaluable. Last but not least, we would like to thank Springer for 
their collaboration in getting this book to print. 
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Implicit Surface Reconstruction with Radial Basis 
Functions 

Jun Yang1, Zhengning Wang2, Changqian Zhu2, and Qiang Peng2 

1 School of Mechanical & Electrical Engineering Lanzhou Jiaotong  
University, Lanzhou, Gansu 730070, China 

2 School of Information Science & Technology Southwest Jiaotong  
University, Chengdu, Sichuan 610031, China  

yangj@mail.lzjtu.cn, {znwang,cqzhu,pqiang}@home.swjtu.edu.cn 

Abstract. This paper addresses the problem of reconstructing implicit function 
from point clouds with noise and outliers acquired with 3D scanners. We intro-
duce a filtering operator based on mean shift scheme, which shift each point to 
local maximum of kernel density function, resulting in suppression of noise 
with different amplitudes and removal of outliers. The “clean” data points are 
then divided into subdomains using an adaptive octree subdivision method, and 
a local radial basis function is constructed at each octree leaf cell. Finally, we 
blend these local shape functions together with partition of unity to approximate 
the entire global domain. Numerical experiments demonstrate robust and high 
quality performance of the proposed method in processing a great variety of 3D 
reconstruction from point clouds containing noise and outliers. 

Keywords: Filtering, space subdivision, radial basis function, partition of unity. 

1   Introduction 

The interest for point-based surface has grown significantly in recent years in com-
puter graphics community due to the development of 3D scanning technologies, or the 
riddance of connectivity management that greatly simplifies many algorithms and 
data structures. Implicit surfaces are an elegant representation to reconstruct 3D sur-
faces from point clouds without explicitly having to account for topology issues. 
However, when the point sets data generated from range scanners (or laser scanners) 
contain large noise, especially outliers, some established methods often fail to recon-
struct surfaces or real objects. 

There are two major classes of surface representations in computer graphics: para-
metric surfaces and implicit surfaces. A parametric surface [1, 2] is usually given by a 
function f (s, t) that maps some 2-dimensional (maybe non-planar) parameter domain 
Ω into 3-space while an implicit surface typically comes as the zero-level isosurface 
of a 3-dimensional scalar field f (x, y, z). Implicit surface models are popular since 
they can describe complex shapes with capabilities for surface and volume modeling 
and complex editing operations are easy to perform on such models. Moving least 
square (MLS) [3-6] and radial basis function (RBF) [7-15] are two popular 3D im-
plicit surface reconstruction methods. 
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Recently, RBF attracts more attention in surface reconstruction. It is identified as 
one of most accurate and stable methods to solve scattered data interpolation prob-
lems. Using this technique, an implicit surface is constructed by calculating the 
weights of a set of radial basis functions such they interpolate the given data points. 
From the pioneering work [7, 8] to recent researches, such as compactly-supported 
RBF [9, 10], fast RBF [11-13] and multi-scale RBF [14, 15], the established algo-
rithms can generate more and more faithful models of real objects in last twenty 
years, unfortunately, most of them are not feasible for the approximations of unorgan-
ized point clouds containing noise and outliers. 

In this paper, we describe an implicit surface reconstruction algorithm for noise 
scattered point clouds with outliers. First, we define a smooth probability density 
kernel function reflecting the probability that a point p is a point on the surface S 
sampled by a noisy point cloud. A filtering procedure based on mean shift is used to 
move the points along the gradient of the kernel functions to the maximum probability 
positions. Second, we reconstruct a surface representation of “clean” point sets im-
plicitly based on a combination of two well-known methods, RBF and partition of 
unity (PoU). The filtered domain of discrete points is divided into many subdomians 
by an adaptively error-controlled octree subdivision, on which local shape functions 
are constructed by RBFs. We blend local solutions together using a weighting sum of 
local subdomains. As you will see, our algorithm is robust and high quality. 

2   Filtering  

2.1   Covariance Analysis 

Before introducing our surface reconstruction algorithm, we describe how to perform 
eigenvalue decomposition of the covariance matrix based on the theory of principal 
component analysis (PCA) [24], through which the least-square fitting plane is de-
fined to estimate the kernel-based density function. 

Given the set of input points Ω＝{pi}iє[1,L], pi є R3, the weighted covariance matrix 
C for a sample point pi є Ω is determined by  

( ) ( ) ( )T

1

L
hj i j i j ij

= − − ⋅ Ψ −∑
=

C p p p p p p ,                          (1) 

where ip  is the centroid of the neighborhood of pi, Ψ is a monotonically decreasing 

weight function, and h is the adaptive kernel size for the spatial sampling density. 
Consider the eigenvector problem 

l l lλ⋅ = ⋅C e e .                                                    (2) 

Since C is symmetric and positive semi-define, all eigenvalues λl are real-valued and 
the eigenvectors el form an orthogonal frame, corresponding to the principal compo-
nents of the local neighborhood. 

Assuming λ0≤λ1≤λ2, it follows that the least square fitting plane H(p): 

( ) 0i 0− ⋅ =p p e  through ip  minimizes the sum of squared distances to the neighbors 

of pi. Thus e0 approximates the surface normal ni at pi, i.e., ni = e0. In other words, e1 
and e2 span the tangent plane at pi.  
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2.2   Mean Shift Filtering 

Mean shift [16, 17] is one of the robust iterative algorithms in statistics. Using this 
algorithm, the samples are shifted to the most likely positions which are local maxima 
of kernel density function. It has been applied in many fields of image processing and 
visualization, such as tracing, image smoothing and filtering. 

In this paper, we use a nonparametric kernel density estimation scheme to estimate 
an unknown density function g(p) of input data. A smooth kernel density function 
g(p) is defined to reflect the probability that a point pє R3 is a point on the surface S 
sampled by a noisy point cloud Ω. Inspired by the previous work of Schall et al. [21], 
we measure the probability density function g(p) by considering the squared distance 
of p to the plane H(p) fitted to a spatial k-neighborhood of pi as 

  ( ) ( ) ( ) ( ) ( ){ }2

pro pro
1 1

1
L L

i i i i i i
i i

g g G h
= =

= = Φ − − − − ⋅⎡ ⎤⎣ ⎦∑ ∑p p p p p p p p n ,       (3) 

where Φi and Gi are two monotonically decreasing weighting functions to measure the 
spatial distribution of point samples from spatial domain and range domain, which are 
more adaptive to the local geometry of the point model. The weight function could be 
either a Gaussian kernel or an Epanechnikov kernel. Here we choose Gaussian func-

tion 
2 2/ 2xe σ−  . The ppro is an orthogonal projection of a certain sample point p on the 

least-square fitting plane. The positions p close to H(p) will be assigned with a higher 
probability than the positions being more distant. 

The simplest method to find the local maxima of (3) is to use a gradient-ascent 
process written as follows:  

( ) ( )
1

L

i
i

g g
=

∇ = ∇∑p p ( ) ( ) ( )pro pro2
1

2 L

i i i i i i
i

G
h =

−≈ Φ − − − ⋅ ⋅⎡ ⎤⎣ ⎦∑ p p p p p p n n .      (4) 

Thus the mean shift vectors are determined as  

( ) ( ) ( ) ( ) ( )pro pro pro pro
1 1

( )
L L

i i i i i i i i i
i i

m G G
= =

⎧ ⎫= − Φ − − − ⋅ ⋅ Φ − −⎡ ⎤⎨ ⎬⎣ ⎦
⎩ ⎭
∑ ∑p p p p p p p p n n p p p p .   (5) 

Combining equations (4) and (5) we get the resulting iterative equations of mean 
shift filtering 

1 ( )j j
i im+ =p p , o

i i=p p ,                                           (6) 

where j is the number of iteration. In our algorithm, g(p) satisfies the following condi-
tions 

( ) ( ) ( )( )2 1 1 2 1 1 20, 0g g g− >∇ − ∀ ≥ ∀ ≥p p p p p p p ,                          (7) 

thus g(p) is a convex function with finite stable points in the set ( ) ( ){ }1|i i iU g g= ≥p p p  

resulting in the convergence of the series { }, 1,..., , 1,2,...j
i i L j= =p . Experiments show that 

we stop iterative process if 1 35 10j j
i i h+ −− ≤ ×p p  is satisfied. Each sample usually 

converges in less than 8 iterations. Due to the clustering property of our method, 
groups of outliers usually converge to a set of single points sparsely distributed 
around the surface samples. These points can be characterized by a very low spatial 
sampling density compared to the surface samples. We use this criteria for the detec-
tion of outliers and remove them using a simple threshold. 
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3   Implicit Surface Reconstruction 

3.1   Adaptive Space Subdivision 

In order to avoid solving a dense linear system, we subdivide the whole input points 
filtered by mean shift into slightly overlapping subdomains. An adaptive octree-based 
subdivision method introduced by Ohtake et al. [18] is used in our space partition. 

We define the local support radius R=α di for the cubic cells which are generated 
during the subdivision, di is the length of the main diagonal of the cell. Assume each 
cell should contain points between Tmin and Tmax. In our implementation, α=0.6, Tmin 
=20 and Tmax =40 has provided satisfying results. 

A local max-norm approximation error is estimated according to the Taubin dis-
tance [19], 

  ( ) ( )max /
i i

i i
c R

f fε
− <

= ∇
p

p p .                                             (8) 

If the ε is greater than a user-specified threshold ε0, the cell is subdivided and a local 
neighborhood function fi is built for each leaf cell. 

3.2   Estimating Local Shape Functions 

Given the set of N pairwise distinct points Ω={pi}iє[1,N], pi єR3, which is filtered by 
mean shift algorithm, and the set of corresponding values {vi}iє[1,N], vi єR, we want to 
find an interpolation  f : R3→R such that  

( )i if v=p .                                                      (9) 

We choose the f(p) to be a radial basis function of the form 

( ) ( ) ( )
1

N

i i
i

f η ω ϕ
=

= + −∑p p p p ,                            (10) 

where η(p)= ζkηk(p) with {ηk(p)}kє[1,Q] is a basis in the 3D null space containing all 
real-value polynomials in 3 variables and of order at most m with { }3

3
mQ +=  depending 

on the choice of φ, φ is a basis function, ωi are the weights in real numbers, and | . | 
denotes the Euclidean norm. 

There are many popular basis functions φ for use: biharmonic φ(r) = r, triharmonic 
φ(r) = r3, multiquadric φ(r) = (r2+c2)1/2, Gaussian φ(r) = exp(-cr2), and thin-plate 
spline φ(r) = r2log(r), where r = |p-pi|. 

As we have an under-determined system with N+Q unknowns and N equations, so-
called natural additional constraints for the coefficient ωi are added in order to ensure 
orthogonality, so that  

1 2
1 1 1

0
N N N

i i i Q
i i i

ω η ω η ω η
= = =

= = = =∑ ∑ ∑" .                              (11) 

The equations (9), (10) and (11) may be written in matrix form as 

0

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
T

A η ω v

η 0 ζ
,                                               (12) 

where A=φ(|pi-pj|), i,j =1,…,N, η=ηk(pi), i=1,…,N, k=1,…,Q, ω=ωi, i=1,…,N and 
ζ=ζk, k=1,…,Q. Solving the linear system (14) determines ωi and ζk, hence the f(p). 
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Fig. 1. A set of locally defined functions are blent by the PoU method. The resulting function 
(red solid curve) is constructed from four local functions (thick dashed curves) with their  
associated weight functions (dashed dotted curves). 

3.3   Partition of Unity 

After suppressing high frequency noise and removing outliers, we divide the global 
domain Ω={pi}iє[1,N] into M lightly overlapping subdomains {Ωi}iє[1,M] with 

i iΩ ⊆ Ω∪  

using an octree-based space partition method. On this set of subdomains {Ωi}iє[1,M], we 
construct a partition of unity, i.e., a collection of non-negative functions {Λi}iє[1,M] 
with limited support and with ∑Λi=1 in the entire domain Ω. For each subdomain Ωi 
we construct a local reconstruction function fi based on RBF to interpolate the sam-
pled points. As illustrated in Fig. 1, four local functions f1(p), f2(p), f3(p) and f4(p) are 
blended together by weight functions Λ1, Λ2, Λ3 and Λ4. The red solid curve is the 
final reconstructed function. 

Now an approximation of a function f(p) defined on Ω is given by a combination of 
the local functions 

( ) ( ) ( )
1

M

i i
i

f f
=

= Λ∑p p p .                                         (13) 

The blending function is obtained from any other set of smooth functions by a nor-
malization procedure 

( ) ( ) ( )i i j
j

w wΛ = ∑p p p .                                     (14) 

The weight functions wi must be continuous at the boundary of the subdomains Ωi. 
Tobor et al. [15] suggested that the weight functions wi be defined as the composition 
of a distance function Di:Rn→[0,1], where Di(p)=1 at the boundary of Ωi and a decay 
function θ: [0,1]→[0,1], i.e. wi(p)= θ ◦ Di(p). More details about Di and θ can be 
found in Tobor’s paper. 

4   Applications and Results 

All results presented in this paper are performed on a 2.8GHz Intel Pentium4 PC with 
512M of RAM running Windows XP. 

To visualize the resulting implicit surfaces, we used a pure point-based surface 
rendering algorithm such as [22] instead of traditionally rendering the implicit sur-
faces using a Marching Cubes algorithm [23], which inherently introduces heavy 
topological constraints. 
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Table 1. Computational time measurements for mean shift filtering and RBF+PoU surface 
reconstructing with error bounded at 10-5. Timings are listed as minutes:seconds. 

model Bunny  Dragon head  Dragon  
Pinput 362K 485K 2.11M 
Pfilter 165K 182K 784K 
Tfilter 9:07 13:26 41:17 
Toctree 0:02 0:04 0:10 
Trec 0:39 0:51 3:42 

 

(a)                                   (b)                                (c)  

Fig. 2. Comparison of implicit surface reconstruction based on RBF methods. (a) Input noisy 
point set of Stanford bunny (362K). (b) Reconstruction with Carr’s method [11]. (c)  
Reconstruction with our method in this paper. 

 

(a)                              (b)                               (c)                             (d) 

Fig. 3. Error threshold controls reconstruction accuracy and smoothness of the scanned dragon 
model consisting of 2.11M noisy points. (a) Reconstructing with error threshold at 8.4x10-4. (c) 
Reconstructing with error threshold at 2.1x10-5. (b) and (d) are close-ups of the red rectangle 
areas of (a) and (c) respectively. 

Table 1 presents computational time measurements for filtering and reconstructing 
of three scan models, bunny, dragon head and dragon, with user-specified error 
threshold 10-5 in this paper. In order to achieve good effects of denoising we choose a 
large number of k-neighborhood for the adaptive kernel computation, however, more 
timings of filtering are spent . In this paper, we set k=200. Note that the filtered points 
are less than input noisy points due to the clustering property of our method. 

In Fig. 2 two visual examples of the reconstruction by Carr’s method [11] and our 
algorithm are shown. Carr et al. use polyharmonic RBFs to reconstruct smooth, mani-
fold surfaces from point cloud data and their work is considered as an excellent  
and successful research in this field. However, because of sensitivity to noise, the 
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reconstructed model in the middle of Fig. 2 shows spurious surface sheets. The qual-
ity of the reconstruction is highly satisfactory, as be illustrated in the right of Fig. 2, 
since a mean shift operator is introduced to deal with noise in our algorithm.  

For the purpose of illustrating the influence of error thresholds on reconstruction 
accuracy and smoothness, we set two different error thresholds on the reconstruction 
of the scanned dragon model, as demonstrated by Fig. 3. 

5   Conclusions and Future Work 

In this study, we have presented a robust method for implicit surface reconstruction 
from scattered point clouds with noise and outliers. Mean shift method filters the raw 
scanned data and then the PoU scheme blends the local shape functions defined by 
RBF to approximate the whole surface of real objects. 

We are also investigating various other directions of future work. First, we are trying 
to improve the space partition method. We think that the Volume-Surface Tree [20], an 
alternative hierarchical space subdivision scheme providing efficient and accurate sur-
face-based hierarchical clustering via a combination of a global 3D decomposition at 
coarse subdivision levels, and a local 2D decomposition at fine levels near the surface 
may be useful. Second, we are planning to combine our method with some feature ex-
traction procedures in order to adapt it for processing very incomplete data. 

Acknowledgements. This work was supported by ‘Qing Lan’ Talent Engineering 
Funds by Lanzhou Jiaotong University. 

References 

1. Weiss, V., Andor, L., Renner, G., Varady, T.: Advanced Surface Fitting Techniques. 
Computer Aided Geometric Design 1, 19–42 (2002) 

2. Iglesias, A., Echevarría, G., Gálvez, A.: Functional Networks for B-spline Surface Recon-
struction. Future Generation Computer Systems 8, 1337–1353 (2004) 

3. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point Set Sur-
faces. In: Proceedings of IEEE Visualization, San Diego, CA, USA, pp. 21–28 (2001) 

4. Amenta, N., Kil, Y.J.: Defining Point-Set Surfaces. ACM Transactions on Graphics 3, 
264–270 (2004) 

5. Levin, D.: Mesh-Independent Surface Interpolation. In: Geometric Modeling for Scientific 
Visualization, pp. 37–49. Springer, Heidelberg (2003) 

6. Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust Moving Least-Squares Fitting with Sharp 
Features. ACM Transactions on Graphics 3, 544–552 (2005) 

7. Savchenko, V.V., Pasko, A., Okunev, O.G., Kunii, T.L.: Function Representation of Solids 
Reconstructed from Scattered Surface Points and Contours. Computer Graphics Forum 4, 
181–188 (1995) 

8. Turk, G., O’Brien, J.: Variational Implicit Surfaces. Technical Report GIT-GVU-99-15, 
Georgia Institute of Technology (1998) 

9. Wendland, H.: Piecewise Polynomial, Positive Definite and Compactly Supported Radial 
Functions of Minimal Degree. Advances in Computational Mathematics, pp. 389–396 
(1995) 



12 J. Yang et al. 

10. Morse, B.S., Yoo, T.S., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolating Im-
plicit Surfaces from Scattered Surface Data Using Compactly Supported Radial Basis 
Functions. In: Proceedings of Shape Modeling International, Genoa, Italy, pp. 89–98 
(2001) 

11. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Ev-
ans, T.R.: Reconstruction and Representation of 3D Objects with Radial Basis Functions. 
In: Proceedings of ACM Siggraph 2001, Los Angeles, CA, USA, pp. 67–76 (2001) 

12. Beatson, R.K.: Fast Evaluation of Radial Basis Functions: Methods for Two-Dimensional 
Polyharmonic Splines. IMA Journal of Numerical Analysis 3, 343–372 (1997) 

13. Wu, X., Wang, M.Y., Xia, Q.: Implicit Fitting and Smoothing Using Radial Basis Func-
tions with Partition of Unity. In: Proceedings of 9th International Computer-Aided-Design 
and Computer Graphics Conference, Hong Kong, China, pp. 351–360 (2005) 

14. Ohtake, Y., Belyaev, A., Seidel, H.P.: Multi-scale Approach to 3D Scattered Data Interpo-
lation with Compactly Supported Basis Functions. In: Proceedings of Shape Modeling In-
ternational, Seoul, Korea, pp. 153–161 (2003) 

15. Tobor, I., Reuter, P., Schlick, C.: Multi-scale Reconstruction of Implicit Surfaces with At-
tributes from Large Unorganized Point Sets. In: Proceedings of Shape Modeling Interna-
tional, Genova, Italy, pp. 19–30 (2004) 

16. Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach toward Feature Space Analysis. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 5, 603–619 (2002) 

17. Cheng, Y.Z.: Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 8, 790–799 (1995) 

18. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level Partition of Unity 
Implicits. ACM Transactions on Graphics 3, 463–470 (2003) 

19. Taubin, G.: Estimation of Planar Curves, Surfaces and Nonplanar Space Curves Defined 
by Implicit Equations, with Applications to Edge and Range Image Segmentation. IEEE 
Transaction on Pattern Analysis and Machine Intelligence 11, 1115–1138 (1991) 

20. Boubekeur, T., Heidrich, W., Granier, X., Schlick, C.: Volume-Surface Trees. Computer 
Graphics Forum 3, 399–406 (2006) 

21. Schall, O., Belyaev, A., Seidel, H.-P.: Robust Filtering of Noisy Scattered Point Data. In: 
IEEE Symposium on Point-Based Graphics, Stony Brook, New York, USA, pp. 71–77 
(2005) 

22. Rusinkiewicz, S., Levoy, M.: Qsplat: A Multiresolution Point Rendering System for Large 
Meshes. In: Proceedings of ACM Siggraph 2000, New Orleans, Louisiana, USA, pp. 343–
352 (2000) 

23. Lorensen, W.E., Cline, H.F.: Marching Cubes: A High Resolution 3D Surface Construc-
tion Algorithm. Computer Graphics 4, 163–169 (1987) 

24. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface Reconstruction 
from Unorganized Points. In: Proceedings of ACM Siggraph 1992, Chicago, Illinois, USA, 
pp. 71–78 (1992) 

 



A Discrete Approach to Compute Terrain Morphology

Paola Magillo1, Emanuele Danovaro2, Leila De Floriani1,
Laura Papaleo1, and Maria Vitali1

1 Department of Information and Computer Science, University of Genova, Italy
{magillo,deflo,papaleo,vitali}@disi.unige.it

http://www.disi.unige.it
2 Free University of Bozen–Bolzano, Italy

emanuele.danovaro@unibz.it
http://www.unibz.it

Abstract. We consider the problem of extracting morphology of a terrain repre-
sented as a Triangulated Irregular Network (TIN). We propose a new algorithm
and compare it with representative algorithms of the main approaches existing
in the literature to this problem. The new algorithm has the advantage of being
simple, using only comparisons (and no floating-point computations), and of be-
ing suitable for an extension to higher dimensions. Our experiments consider both
real data and artificial test data. We evaluate the difference in the results produced
on the same terrain data, as well as the impact of resolution level on such a differ-
ence, by considering representations of the same terrain at different resolutions.

Keywords: Morse and Morse-Smale Decomposition, Terrain Morphology, Ter-
rain Analysis.

1 Introduction

Extracting and representing morphological information is a very relevant issue in order
to develop automatic tools for gaining and maintaining knowledge of terrain models
which are are widely used in different application contexts such as Geographic Infor-
mation Systems (GISs), Virtual Reality, Entertainment and so on.

A terrain model is a scalar field, i.e., a function f (x,y) (usually called height func-
tion) defined on a domain D. Often, f is known only at a finite set of sampled points
and it is approximated through a discrete digital model: a Regular Square Grid (RSG)
if the sampled points are regularly spaced, and a Triangulated Irregular Network (TIN)
if they are irregularly sampled. Both RSGs and TINs provide accurate representations
of terrains, but they fail in capturing the morphological structure defined by critical
points (pits, peaks, passes), and integral lines (ridges, valleys). On the contrary, a mor-
phological terrain description is compact and supports a knowledge-based approach to
analyze, visualize and understand a terrain dataset, as required, for instance, in visual
data mining applications.

In the last decades, there has been a lot of research focusing on extracting critical
features (points, lines or regions) from images or terrain data described by an RSG,
or a TIN. More recent works in computational geometry concentrate on representing

J. Braz et al. (Eds.): VISIGRAPP 2007, CCIS 21, pp. 13–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the morphology of terrains through a decomposition of the terrain surface into regions
bounded by critical points (minima, maxima, saddle points) and integral lines. These
techniques are rooted in Morse theory and try to simulate the decomposition of a terrain
induced by C2 Morse functions in the discrete case.

In this paper, we propose a new algorithm for extracting morphological informa-
tion (in the form of the stable and unstable Morse complexes) from a terrain model
described by a TIN, which is simple, requires no floating point calculations, and can
manage special configurations such as flat triangles and edges. We also present a com-
prehensive study of analogous existing methods and propose a set of experiments in
order to evaluate our approach.

Recall that a TIN basically consists of a triangulation Σ covering the field domain D
of the height function f , having its vertices at the sampled points. In a triangulation,
two nearby triangles can only touch each other by sharing a vertex, or a common edge.
On each triangle t in Σ, function f is approximated as a linear interpolant of the height
values sampled at the three vertices of t. Note that RSGs can be reduced to TINs by
triangulating each square into two triangles.

In the remainder of this paper, Section 2 introduces some basic background notions;
Section 3 discusses related works; Section 4 presents our novel algorithm; Section 5
introduces three representative algorithms that we have implemented for comparison,
and Section 6 presents an experimental evaluation of our novel algorithm compared to
these three methods. Finally, Section 7 draws some concluding remarks.

2 Background

Morse theory is a powerful tool to capture the topological structure of a scalar field in
the continuum [15]. Let f be a C2 real-valued function defined over a domain D ⊆ R

2. A
point p ∈ R

2 is called a critical point of f if and only if the gradient of f vanishes at p.
The function f is a Morse function if and only if the Hessian matrix Hp f of the second
derivatives of f at a critical point p is non-singular (its determinant is �= 0): basically, if
all its critical points are non-degenerate. This implies that the critical points of a Morse
function are isolated. The number of negative eigenvalues of Hp f is called the index of
a critical point p. In 2D, a non-degenerate critical point p of a Morse function f can be
of three types: a minimum (pit), a saddle, or a maximum (peak), if p has index 0, 1 or
2, respectively. An integral line of a function f is a maximal path which is everywhere
tangent to the gradient vector field (see Figure 1 (a)). It is emanating from a critical
point or from the boundary of D, and it reaches another critical point or the boundary of
D. An integral line which connects a maximum to a saddle, or a minimum to a saddle,
is called a separatrix line. In Geographic Information Systems (GISs), separatrix lines
that connect minima to saddles are usually called ravine, or valley lines, while those
that connect saddles to maxima are called ridge lines.

Integral lines that converge to a maximum, a saddle and a minimum form a 2-
dimensional (region), 1-dimensional (line) and 0-dimensional (point) cell, respectively,
and they are called unstable manifolds. Integral lines that originate from a minimum, a
saddle and a maximum form a 2-, 1- and 0-dimensional cell, respectively, and they are
called stable manifolds. See Figure 1 (b). The stable (unstable) manifolds are pair-wise
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(a) (b) (c)

Fig. 1. (a) Integral lines, symbols •, �, denote minima, maxima and saddles, respectively.
(b) The 2-manifolds corresponding to a minimum (green) and to a maximum (yellow). (c) The
Morse-Smale complex, its 1-skeleton is the critical net.

disjoint cells and form a complex, since the boundary of every cell is the union of lower-
dimensional cells. They are called stable and unstable Morse complexes, respectively.

A Morse function f is a Morse-Smale function when the stable and the unstable
manifolds intersect only transversally. In two dimensions, this means that the stable
and unstable 1-manifolds (lines) cross when they intersect, and the crossing points are
saddles.

A Morse-Smale complex is the complex defined by the intersection of the stable and
unstable Morse complexes for a function f which is a Morse-Smale function. The 1-
skeleton of a Morse-Smale complex consists of the critical points and the separatrix
lines joining them, and it is called a critical net (see Figure 1 (c)).

The surface network [11,14] used in Geographic Information Systems (GISs) for
morphological terrain modeling, is essentially the critical net.

3 Related Work

Several algorithms have been proposed in the literature for decomposing the domain
of a scalar field f (as a terrain model) into an approximation of a Morse complex (or
of a Morse-Smale complex). They either fit a C1 or C2 surface on a terrain model, or
simulate a Morse-Smale complex (a Morse complex) in the discrete case. By assuming
that no two adjacent vertices in the TIN have the same height, they ensure that the
critical points are isolated, as in the Case of C2 Morse functions [7].

A Morse (Morse-Smale) complex can also be defined using the concepts related to
watershed tranform [9,18,12,8,16]. The watershed transform in the C2 case provides a
decomposition of a the domain of a function f into open regions of influence associated
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Fig. 2. Edge labelled T-D is steeper than edge labelled S-D. Numbers denote vertex heights.
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to the minima, called catchment basins. Catchment basins can be described in terms
of topographic distance [9]. In the 2D case, if the function f is a Morse function, the
catchment basins of the minima are essentially 2-manifolds of the stable Morse com-
plex. Through a change in the sign of the Morse function f , the 2-manifolds (associated
to the maxima) of the unstable Morse complex can be extracted.

In order to build a structural representation of a given scalar field f , all the existing
methods extract critical points of f as a first step of the global procedure. The most
common approach to compute critical points examines, for each vertex p in the TIN, the
neighbor points (sharing with p and edge) and computes the height difference between
every point and p. If all differences are positive (p is lower than its neighbors), then
p is a minumum. If all differences are negative (p is higher than its neighbors), then
p is a maximum. If the number of sign changes of such difference, while traversing
p’s neighbors in cyclic order, is two, then p is a regular, i.e., non-critical point. If the
number of sign changes is four, then p is a saddle; if it is more than four, then p is a
multiple saddle. This technique is used by almost all the algorithms, with the exception
of [2].

Existing algorithms for extracting an approximation of a Morse (Morse-Smale) com-
plex can be classified according to: the input they consider (namely RSG or TIN),
the output they produce (namely an approximation of a Morse-Smale complex or of
a Morse complex) and the algorithmic technique they choose. Here, we have classified
them into boundary-based or region-based techniques [4].

Boundary-based techniques basically extract an approximation of the critical net, by
computing the critical points and then tracing the integral lines, starting from saddle
points [1,13,17,7,2,3,10]. Region-based techniques extract a discrete approximation of
the stable and unstable Morse complexes, by starting from minima and maxima and
letting a region grow until a given condition is reached [5,6,9,18,8]. We included wa-
tershed algorithms in the latter class since they are region-based in nature.

This paper is organized as follows. In Section 5 we present our implementations of
some representative algorithms of the above techniques. All algorithms, with the ex-
ception of the watershed approach, require that the three vertices of a triangle have dis-
tinct heights. This is generally achieved, when necessary, by perturbation of the height
values.

4 The STD Algorithm

In this section we present our novel algorithm, that we called STD, for extracting the
2-manifolds (i.e., cells associated with the minima) of a stable Morse complex for a
(Morse) function f defined on a TIN. The algorithm is region-based in nature since it
starts from the minima and lets the 2-manifolds of the Morse complex grow as long as
it is possible.

We first describe the algorithm under the assumption that no two vertices of the
terrain have the same height. Successively, we relax this assumption and show how to
deal with flat triangles, and triangles having one flat edge.
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4.1 Basic Version of the Algorithm

The STD algorithm performs three main steps:

1. Classify the vertices of each triangle t in the TIN, based on their heights.
2. Extract the minima of the function in the TIN.
3. For each minimum p, construct the stable 2-manifold by iteratively adding trian-

gles to it.

Vertex classification and Extraction of Local Minima. For each triangle t in the TIN,
the highest, middle, and lowest vertex are labeled as Source (S), Through (T), and Drain
(D), respectively.

By this STD configuration of the vertices we basically simulate the gradient direction
of t in the discrete case. Note that this labelling does not assume any kind of interpo-
lation (linear or higher-order) on triangles or edges of the mesh. Edge labelled S-D is
not necessarily the edge of steepest descent. In Figure 2 the steepest descent is at edge
labelled T-D.

The local minima identification is very simple: they are found as those vertices la-
beled D in all their incident triangles.

Construction of the Stable 2-Manifolds. For each minimum p, the stable 2-manifold
γp associated with p is initialized with all triangles of the TIN which are incident in
p. Successively, an iterative phase starts in which, at each step, the algorithm decides
if a triangle t, externally adjacent to one edge e of the current perimeter of γp, can be
added to γp. The rationale for this decision takes the following issues into account: (i)
the choice must reflect the intuition that water flows from a higher to a lower height,
(ii) the choice must be deterministic, i.e., a triangle t cannot be included into different
2-manifolds, depending on the order in which minima are processed.

The algorithm maintains the invariant that, if a triangle t has been included into γp,
then the edge of t labelled T-D is not on the boundary of γp.

4.2 Inclusion of a Triangle

Let e be an edge of the current perimeter of γp, and t be the triangle externally adjacent
to e. The decision whether to include t into γp or not, is based on the STD configuration
of its vertices. There are three possible cases.

Case 1. If the vertex v of t opposite to e is labelled D in t, then we do not include t into
γp. See Figure 3 (a). This is according to the intuition that water cannot exit t through
e, since it naturally flows towards v. Triangle t will be included when we will reach it
from another edge, and Case 2 or 3 will hold.

Case 2. If the vertex v of t opposite to e is labelled S in t, then we include t into γp. See
Figure 3 (b). Intuitively, water tends to flow across t and reach vertex v′, endpoint of e,
which is labelled D in t. The question is whether it will exit t through e (in that case
t belongs to γp) or through the edge of t labelled S-D. Now, we explain why we have
decided that water passes through edge e.
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Fig. 3. Case 1 (a) and Case 2 (b). Arrows denote water flow. Green triangles are included.

Let t0 be the triangle belonging to γp and adjacent to t along e, and let v0 be the
vertex of t0 opposite to e. Note that, for the invariant, e cannot be labelled T-D in t0
(equivalently, v0 cannot be labelled S).

If e is labelled S-T in t0, then water enters t0 through e, therefore it must exit from t
through e.

If e is labelled S-D in t0, then water exits t0 through its edge e0 labelled T-D (it
cannot exit through the other edge, since it is labelled S-T, and it must exit from one
edge different from e otherwise t0 would not have been included in γp). Therefore water
that flows across t and reaches vertex v (which is labelled D in both t and t0) turns
around v′, enters t0, and finally exits t0 through e0.

Note that the invariant is maintained: edge e (labelled T-D in the newly included
triangle t) is inside the updated 2-manifold γp.

Case 3. If the vertex v of t opposite to e is labelled T in t, then the situation is more
complex. Certainly, water flows to vertex v′, endpoint of e, which is labelled D in t.
Then, will it exit from t into γp through edge e, or will it exit t through its edge e′

labelled T-D, towards the 2-manifold existing on the other side?
Starting from t, we explore the maximal fan of triangles having their lowest vertex

in v′ (i.e., v′ is labelled D in all such triangles). Let w be the vertex of maximum height
among the vertices of such triangles. The part of the fan starting from t and going up
to edge v′w is included into γp. See Figure 4 (a). The other part of the fan will be later
included into the 2-manifold existing on the other side. Note that, if w is the same as
the vertex labelled S in t, then no triangle is included. See Figure 4 (b).

The invariant is maintained since the edges remaining on the boundary of the updated
2-manifold γp are v′w, and edges opposite to v′: none of them is labelled T-D. In fact,
edges opposite to v′ are labelled S-T in the just included triangles, and edge v′w is
labelled S-D in both adjacent triangles.

Note that the management of Case 3 does not interfere with Case 2. In fact, the edge
e1 marking the other side of the fan may be labelled T-D in its adjacent triangle t1
belonging to the fan. In this case, when reached from e1, t1 will be included into the
2-manifold γq existing on the other side of e1. The triangle adjacent to t1 along the other
edge of t1 incident in v′ may be in the same situation (and thus be included in γq as
well), and so on. Thus, a whole fan of triangles, starting from t1, is included into γq. But
this fan must end at edge w, because the opposite vertex to v′w is labelled T in the next
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Fig. 4. (a) Case 3 with non-empty set of included triangles; green triangles are included. (b) Case
3 with empty the set of included triangles. (c) Inclusion of the remaining triangles of the fan by
applying Case 2 from edge e1.

triangle. Thus, there is no interference between Case 3 applied from edge e, and Case 2
repeatedly applied starting from edge e1. See Figure 4 (c).

4.3 Time Complexity

It can be easily shown that every triangle t of the TIN is examined at most three times,
one from each edge, before being included into some 2-manifold. Thus, the worst-case
time complexity of our algorithm is O(n) where n is the number of TIN vertices. The
only non-trivial part in this statement is showing that, in Case 3, a triangle can be in
a traversed fan, without being included, at most once during the whole algorithm. The
triangles of the fan, which are not included, are those located beyond edge v′w. The
same fan may be traversed from the opposite side, while growing another 2-manifold
γq. Since we will be traversing the same fan in the opposite way, in that situation exactly
those triangles, that were not previously included, will be found before edge v′w, and
will be included into γq.

4.4 Management of Special Cases

Now, we explain how the STD algorithm deals with flat triangles, and triangles with a
flat edge.

In a preprocessing step, we find edge-connected areas of flat triangles, and vertex-
connected networks of flat edges that are not edge- or vertex-incident into a flat triangle.
Such areas / networks are candidate to act as 1- or 2-dimensional local minima. Let h be
the height of a flat area or network. Let h′ be the minimum height of the third vertices
of triangles externally adjacent to the perimeter of the flat area, or incident into edges
of the network. If h′ > h then the flat area / network is treated as a local minimum (see
Figure 5 (a) and (b)): its 2-manifold is initialized with all the triangles of the flat area,
or with all triangles incident in the flat network, and it is expanded in the same way as
other 2-manifolds.

A flat area that is not a local minimum (i.e., h′ < h) is assigned to the 2-manifold con-
taining the triangle t ′, externally adjacent to the flat area, whose third vertex has height
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t’

h’<h

(a) (b) (c)

Fig. 5. Connected sets of flat triangles and edges (colored), with their adjacent triangles. Flat area
(a) and flat network (b) act as local minima, unlike (c). Arrows denote water flow.

h′ (see Figure 5 (c)). If t ′ is not unique, then we choose the 2-manifold corresponding
to the lowest local minimum (if unique), or arbitrarily (otherwise).

During the algorithm, triangles with a flat edge may be examined to test whether
they can be included into a growing 2-manifold. For such purpose, Cases 1, 2, and 3
introduce some exceptions when triangle t has a flat edge.

An exception may arise in Case 1, when the opposite vertex v, labelled D, is endpoint
of the flat edge of t. In this case, we consider triangle t ′ which is adjacent to t along its
flat edge e′. See Figure 6 (a). If edge e′ is higher than the third vertex of t ′, we do not
include t (no exception).

If edge e′ is lower than the third vertex of t ′, then this is an exception: we construct
the fan of triangles incident into the vertex of t which is labelled D, and proceed in the
same way as in Case 3. In fact, triangles t and t ′ can only be included together from one
of their edges labelled S-D.

Another exception arises in Case 2, when the opposite vertex v, labelled S, is end-
point of the flat edge of t. In this case, the two non-flat edges of t, e and e′, are in the
same situation. We must decide whether to include t into γp from e, or to include t into
the 2-manifold that will reach t from edge e′. We construct the fan of triangles incident
into the vertex of t which is labelled D, and proceed as in Case 3. See Figure 6 (b).

In Case 3, the constructed fan cannot include flat triangles, and cannot include trian-
gles with a flat edge, when the flat edge belongs to a local minimum network. If we find
one of these cases, then we stop extending the fan. See Figure 6 (c).
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Fig. 6. Processing triangles with flat edges. Arrows denote water flow. (a) Triangle t is not in-
cluded from edge e, pink triangles t and t ′ are processed as in Case 3. (b) Green triangles are
included from edge e. (c) Construction of the fan encounters a flat edge (blue) which belong to a
local minimum net, and a flat triangle (cyan): the fan will include only the pink triangles.
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Again in Case 3, the procedure described in Section 4.2 takes the edge v′w, connect-
ing the center v′ of the fan with its upper point w, as the edge where to split the fan and
assign its triangles to the 2-manifolds existing on the two sides of the fan (see Figure 4
(c)). Now, vertex w of maximum height may not be unique. Let w1, w2, ... wM (M > 1)
be the vertices having the maximum height, sorted in counterclockwise order along the
fan. We split the fan at edge v′wi where i is the integer result of division M/2.

5 Representative Morphology Algorithms

We have implemented a number of algorithms that we have chosen as representative of
the approaches existing in the literature (see Section 3).

5.1 A Boundary-Based Algorithm

Our implementation of a boundary-based approach is inspired by [7,17]. It extracts the
Morse-Smale complex from a TIN by computing the critical net, in two basic steps:

1. Extract the critical points and unfold multiple saddles.
2. Compute the 1-cells of the complex by starting from the saddle points, and tracing

two paths of steepest descent and two paths of steepest ascent, which stop at minima
and maxima, respectively.

Starting from each (simple) saddle p, the algorithm computes the four lines belong-
ing to the critical net which are incident in p. At each step, the path is extended by
adding the edge corresponding to the maximum positive [negative] slope, until a max-
imum [minimum] is found. In the implementation we present in this paper we refer
only to the stable Morse complex: for each saddle we trace two lines which follow the
maximum positive slope and stop when two maxima are found.

5.2 A Region-Based Algorithm

We have presented in [5] an algorithm for computing both the stable and unstable Morse
complexes for a TIN. The algorithm can be sketched into two main steps:

1. Extract minima and maxima.
2. Compute the stable (unstable) Morse complex by applying a region-growing pro-

cedure. This procedure adds triangles to a 2-manifold iteratively.

For extracting the stable Morse complex, the algorithm computes the gradient for
each triangle t in M, and the angles between the gradient and the normal vector at each
edge of t (pointing outwards from the triangle). The edges of t corresponding to the
largest and to the smallest angle are marked as exit and entrance, respectively.

A 2-manifold γp of the stable complex is initialized with the triangles incident in a
local minimum p. At a generic step, γp is extended by adding a new triangle t sharing
an edge e with γp, provided that e is an entrance for t and an exit for the triangle t ′ in
γp sharing edge e with t. The unstable complex is computed in a completely symmetric
way.
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EGGS (6561 vertices) MARCY (1000 vertices)

Fig. 7. Two of the test TINs

5.3 A Watershed Algorithm

We have implemented the watershed algorithm based on simulated immersion [18]. Our
implementation is applicable to TINs with flat edges and/or flat triangles and it consists
of mainly three macro-steps:

1. Sort the vertices in increasing order with respect to the height value.
2. Perform the flooding step level by level, starting from the minima: this labels every

vertex as belonging to a 2-manifold associated to a minimum.
3. Assign triangles to basins based on the labels of their vertices.

The flooding step assigns a distinct label to each minimum m and to the vertices of
its associated 2-manifold γm. Those vertices, where two 2-manifolds meet are instead
labeled as watershed vertices. At each iteration, a height value h (initially, the minimum
height) is considered. All vertices with the same height h are first given a neutral label.
Then those vertices whose neighbors have been labeled during the previous iteration
are processed in order to assign the label of a 2-manifold γm to them.

To assign the label to a vertex p, we examine the neighbor vertices of p. If they
all belong to the same 2-manifold γm, or some of them belong to γm and others are
watershed points, then p is marked as belonging to γm. If they belong to two or more
different 2-manifolds, then p is marked as a watershed point. The same operations is
recursively repeated on the neighbor points of the just labeled vertices which have a
neutral label (i.e., height = h).

Vertices at height h that are not connected to any previously processed vertex still
have the neutral label. Such vertices belong to a set of new minima at level h, and get a
new label.

Finally, we label each triangle t. If all the vertices of t, that are not watershed points,
belong to the same 2-manifold γm, then we assign the triangle to γm. If two vertices
belong to different 2-manifolds, then t is assigned to the 2-manifold related to the vertex
with the lowest height.
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6 Experiments

The goal of this section is to measure the quality of the results of the STD algorithm
proposed in this paper, as well as evaluating the degree of uncertainty in morphology
computation, i.e., to which extent the current algorithms are able to provide consis-
tent results. We perform different experimental comparisons on both real and synthetic
datasets by using our STD algorithm, the boundary-based (BND), the region-based
(REG), and the watershed (WTS) algorithm described in Section 5.

Algorithm STD is of course very different from BND; STD and WTS have in com-
mon the idea of growing 2-manifolds from local minima; REG is similar in approach,
but (i) it uses the gradient, and (ii) it builds a 2-manifold in pieces which are then glued
together, while STD builds every 2-manifold directly, thanks to the mechanism of fans
(Case 3).

We show results using two different terrains (see Figure 7):

– EGGS, a synthetic terrain built by sampling a function which is a combination of
two planes and 64 gaussian surfaces,

– MARCY representing part of a real terrain model provided with the US Geological
Survey in which heights have been perturbed in order to remove flat edges.

We have three TINs for EGGS, corresponding to different sampling resolutions
(6,561, 25,921, and 103,041 vertices), and three TINs for MARCY, corresponding to
approximations of the terrain at different resolutions (1,000, 5,000 and 10,000 vertices).
Some images of the computed stable Morse complexes are in Figures 8 and 9, and Fig-
ure 10.

Table 1 evaluates the difference in the results between our new STD algorithm and
the other three. This also provides a measure of the uncertainty of results. In general,
the STD algorithm tends to be closer to the watershed method.

Table 2 reports the quantity of TIN surface whose classification results uncertain (i.e.,
assigned to the 2-manifold of different minima in different algorithms). The various
algorithms may disagree in their results up to an extent between 0.5% and 10.5% of the
total TIN surface.

It may be surprising that algorithms differ so much in their results: up to 9% of
the terrain area may be assigned to four different minima by the four considered ap-
proaches. It is also difficult to judge which one is more correct, because a ground thruth

Table 1. Triangles (t) and percentage of terrain area (a) assigned to a different 2-manifold in the
new STD algorithm and in one of the other three methods

# triang. BND REG WTS
EGGS

12,800 t 398 669 71
a 3.11 5.23 0.55

51,200 t 1934 2,721 62
a 3.78 5.31 0.12

204,800 t 14,828 14,488 112
a 7.24 7.07 0.55

# triang. BND REG WTS
MARCY

1,910 t 107 98 39
a 3.89 2.95 1.64

9,788 t 554 690 151
a 4.73 6.10 1.31

19,602 t 1,802 2,066 356
a 9.20 10.54 1.82
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Table 2. Triangles (t) and percentage of terrain area (a) assigned to a unique 2-manifold, or to 2,
3 and 4 different 2-manifolds, by the four algorithms

# # of different 2-manifolds
triang. 1 2 3 4

EGGS
12,800 t 11,963 42 397 398

a 93.46 0.33 3.10 3.11
51,200 t 48,221 42 1,003 1,934

a 94.18 0.08 1.96 3.78
204,800 t 184,608 48 5,316 14,828

a 90.14 0.02 2.60 7.24

# # of different 2-manifolds
triang. 1 2 3 4

MARCY
1,910 t 1,744 13 46 107

a 94.18 0.64 1.31 3.87
9,788 t 8,835 56 343 554

a 90.26 0.57 3.50 5.66
19,602 t 17,114 149 537 1,802

a 87.31 0.76 2.74 9.19

STD BND REG WTS

Fig. 8. The boundary of the stable Morse complex computed by the four algorithms on the EGGS
terrain (6561 vertices)

STD BND REG WTS

Fig. 9. The boundary of the stable Morse complex computed by the four algorithms on the
MARCY terrain (1000 vertices)

is only available for C2 functions, and not for TINs. Indeed, all existing methods only
approximate Morse (or Morse-Smale) theory in the discrete case, through simplifica-
tions, conventions, and heuristics.

7 Concluding Remarks

We have proposed a new algorithm for computing the stable (unstable) Morse complex
for a TIN terrain model. We performed experiments on both real and synthetic datasets
in order to demonstrate the behavior of the STD algorithm with respect to other al-
gorithms, as well as the intrinsic uncertainty of stable manifolds computation at this
stage of research. We showed that our STD algorithm behaves quite well for all the
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EGGS (6561 vertices) MARCY (1000 vertices)

Fig. 10. The stable Morse complex computed by STD algorith in the test TINs

test datasets and that it provides intuitively good results. Moreover, our algorithm is
very simple, and requires no floating-point calculations since it uses only numerical
comparisons.

Morphology algorithms that can be extended to higher dimensions have a special
interest from the scientific community. Our STD algorithm is as simple as the boundary-
based approach and, unlike it, seem to be more easily extensible to higher dimensions.
For instance, in 3D we label the four vertices of each tetrahedron and have four cases
to be managed.

Finally, [5] present a morphology-based multi-resolution terrain model, to encode
different levels of approximation of a Morse-Smale complex. We plan to use the STD
algorithm in this context.
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Abstract. We present a method for creating geometric models of dendritic
forms. Dendritic shapes are commonplace in the natural world; some examples of
objects exhibiting dendritic shape include lichens, coral, trees, lightning, rivers,
crystals, and venation patterns. Our method first generates a regular lattice with
randomly weighted edges, then finds least-cost paths through the lattice. Multi-
ple paths from a single starting location (or generator) are connected into a single
dendritic shape. Alternatively, path costs can be used to segment volumes into
irregular shapes. The pathfinding process is inexpensive, and allows user control
through specification of endpoint placement, distribution of generators, and ar-
rangement of nodes in the graph.

Keywords: Procedural modeling, natural phenomena, dendrites, path planning.

1 Introduction

Numerous natural phenomena, including trees, plants, lichens, coral, lightning, and
river systems, can be viewed as “dendrites”, a term we use in a general sense to mean
any sort of branching structure. The key elements of dendritic forms are the branching
structures and the erratic winding travels of individual branches. Both these character-
istics can be obtained with least-cost paths in randomly weighted graphs, branching
because paths to different destinations will share the early part of their route, and wind-
ing because the optimal path will have to maneuver around random expensive obstacles.
In this paper, we propose explicit path planning as an algorithm for procedural creation
of natural phenomena.

Proceduralism [5] is a modeling philosophy wherein models are built automatically
or semi-automatically by an algorithm, with no or minimal user intervention. Procedural
techniques typically revolve around the controlled use of randomness to obtain a variety
of different models, all with the same kind of underlying structure. For example, fractal
and multifractal terrain synthesis techniques use a random signal, and judiciously scale
and sum the signal to give the illusion of a mountainside [5].

Path planning is the problem of finding the least-cost path between two nodes in a
weighted graph. Algorithms for finding the least-cost path [14] are well known, since
the problem appears so often in different contexts in computer science. Here, we em-
ploy path planning as an algorithm for extracting structure from randomness. We create
a regular lattice with random weights on the edges; the least-cost paths through the
lattice have visible structure, but since the particular weights are chosen randomly, a

J. Braz et al. (Eds.): VISIGRAPP 2007, CCIS 21, pp. 27–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Above: simple dendrites, with few or many paths; below: fractal dendrites, where new
paths are repeatedly placed in the vicinity of previously chosen paths

collection of different structures can be made. Creating dendrites using path planning
is straightforward: finding multiple paths from the same starting point to multiple end-
points produces a dendrite. By using an entire dendrite as the destination for a new set
of paths, we can create explicitly fractal dendrites.

One of the most popular algorithmic methods for creating dendrites is diffusion-
limited aggregation (DLA), first proposed in the physics literature by Witten and
Sander [15]. DLA has been exploited for dendrite creation in computer graphics. How-
ever, methods for simulating DLA are slow. Employing an iterative path planning tech-
nique, we are able to produce dendrites comparable in appearance to dendritic shapes
produced by a costly DLA simulation, but orders of magnitude more quickly. Some 2D
dendrites created by our method appear in Figure 1.

Our basic method operates over a fixed lattice, and lattice artifacts can sometimes be
seen in the resulting models, just as in lattice DLA. We also present a formulation for
refining the lattice and computing a higher-resolution version of the dendrites.

We demonstrate the utility of our framework by applying it to synthesizing coral. In
particular, we model staghorn coral, one of the most obviously dendritic types of coral.
Our method is suitable for other types of sessile marine life, as well as for other natural
objects including lichens, trees, lightning, and even terrains.

The paper is organized as follows. Following the introduction, we review some pre-
viously proposed methods for generating dendritic shapes, concentrating on DLA and
L-systems. We give details of our path-planning algorithm in section 3. Results, in the
form of images of dendrites and dendrite-based geometry, are shown in section 4; this
section also contains timing figures. Finally, section 5 concludes our paper with a sum-
mary of the contributions and pointers to possible future work.
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2 Previous Work

Algorithms for procedural geometry have been devised by computer graphics prac-
titioners. Two algorithms in particular, L-systems and diffusion-limited aggregation,
have seen considerable attention because of their versatility and the quality of their re-
sults. L-systems [10] uses a replacement grammar to create strings which can be inter-
preted as a variety of botanical forms, particularly (though not exclusively) branching
structures. Diffusion-limited aggregation (DLA) is an algorithmic process capable of
generating dendritic forms akin to those seen in a number of natural objects, including
lichens, crystals, neurons, and lightning [3]. We are particularly interested in DLA, ow-
ing both to the rich set of phenomena which can be described by this method, and to the
irregularities in the branching structures; we aspire to create dendrites with the same
natural appearance. Other models for dendritic growth, including viscous fingering [1],
the Eden model [3], and ad-hoc greedy models [6], have appeared in the physics and
biology literature.

Diffusion-limited aggregation has recently been used in graphics to model lichens
[4] and ice crystals [8,7]. Lightning [9] has been modeled using the related dielectric
breakdown model, which describes another form of Laplacian growth. These results are
of high visual quality, although the modeling process is time-consuming.

The brute-force algorithm for diffusion-limited aggregation [15] is as follows. Some
initial sites in a lattice are set to “occupied”; the remainder of the lattice nodes are
unoccupied. A particle is released, at a great distance from any occupied site, and un-
dertakes a random walk until it reaches some location adjacent to an occupied site. At
that point, the node where the particle is located becomes occupied, and a new walker is
released. The above process is repeated, hundreds, thousands, or even millions of times.
When a sufficient number of particles have been placed, the resulting aggregation has a
fractal dendritic shape; the dendrites arise owing to the greater likelihood of a particle
encountering the tip of a branch than a point along a branch.

L-systems is a parallel rewriting grammar that takes an initial string (“axiom”) and
repeatedly performs applicable transformations on it. The final string is an encoding
of some object, often fractal; the string is interpreted into geometry by mapping each
symbol in the string to some geometric primitive or action. (A popular mapping is to
have the symbols represent “turtle movement”: move forward, move backward, turn
left, turn right).

Basic L-systems do not consider information about the surroundings, since the in-
terpretation into geometry happens at the end of the process. While basic DLA alters
the contents of the grid, other environment variables are not used in DLA simulation
either. For modeling interactions with the environment, open L-systems [12] were de-
vised. While the previous environmentally-sensitive L-systems [13] introduced query
symbols allowing information about the environment to influence development, open
L-systems have a symbol in the grammar for two-way communication between the L-
system and the environment. The similar notion of open DLA has also been employed
for lichen simulation [4]. The main drawback to L-systems lies in the difficulty of devis-
ing the system of replacement rules; the connection between the rules and the resulting
shapes can be profoundly obscure.
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3 Algorithm

Our algorithm involves finding a collection of paths through a weighted graph. The
graph is a regular lattice filling the 2D or 3D space where the modeled object is to ex-
ist; weights on the edges are chosen at random. To create a dendritic form, we connect
together multiple paths which share one endpoint, the root of the dendrite. Our imple-
mentation performs a best-first computation of path costs from the root to all nodes in
the lattice. The dendritic shape can either be converted to geometry, directly (as lines)
or by taking an isosurface from a scalar field; or, the shape can be visualized without
the intermediate geometry, in the case of 2D dendrites.

The method for creating dendrites operates as follows. A regular lattice is created,
and the edges of the lattice given weights from some distribution. We use four-
connected lattices (six-connected in 3D) to conserve memory, but eight-connectivity
(26-connectivity) could be used to reduce lattice artifacts; in this case non-orthogonal
edges’ weights would need to be scaled appropriately. We have found that a uniform
distribution of weights, say W = 1 + r〈R〉, works well. In the preceding, we denote by
W a weight, and let 〈R〉 be a value chosen randomly from the interval (0,1); r is a
parameter determining the amount of fluctuation permitted in the weights. We found a
value of r around 10 to work well. Note that with small r the resulting paths are close to
Manhattan paths (since the constant term dominates), while with larger r the paths are
more erratic (since the random component is relatively more important).

We often perform best-first computation from a more elaborate set of nodes than just
a single root node, and we need some terminology to refer to the base nodes (those
at distance zero); borrowing from the implicit surfaces terminology, we call this set of
nodes the generators. The next stage in our algorithm is to choose the generators for
the dendrite. If the generators are single disjoint nodes, each one will become the root
of a separate dendritic shape, but we commonly choose connected sets of points, as
described shortly. Using best-first search, we populate all nodes in the lattice with the
costs of their least-cost paths from the generators.

Next, we select a set of endpoints in the lattice. The endpoints can be chosen ran-
domly, determined procedurally, or placed manually. In the examples shown in this
paper we placed endpoints almost randomly; we used rejection sampling to prevent two
endpoints from appearing too near to one another.

With the endpoints chosen and the graph populated with distance values, we use a
greedy algorithm to find the least-cost path from each endpoint to the nearest generator.
The union of the paths thus obtained is the dendrite. The overall construction process is
shown in Figure 2.

3.1 Path Refinement

Our method as described so far produces shapes with resolution limited by the fixed
resolution of the mesh. However, there is a natural extension to an iterative refinement
approach: once the skeleton of the dendrite has been created, or the shell of the object
in the case of a mesh from a segmentation, a new higher-resolution lattice can be con-
structed in the region of interest. This refinement process can be repeated if desired. The
basic idea is that a new sublattice is built for each node in the dendrite; the sublattices
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Fig. 2. Plain dendrite construction process. Left: isocontours of distance values from central gen-
erator. Middle: randomly placed endpoints. Right: dendrite arising from planning paths from
endpoints to central generator.

Input: a coarse path D consisting of m nodes.
Output: a refined path D′.

1. For each node in D, say Ni, create a regular lattice Li of size
n×n. Assign positions to nodes in Li relative to Ni.
2. For i = 0 to m−2, stitch the lattices together by adding edges
between nodes in Li and Li+1. Call the resulting graph G.
3. Perform a path planning task within G and return the result.

Fig. 3. Pseudocode for refining a path

are hooked together to form a connected graph, where a new pathfinding process can
take place. The left part of Figure 4 illustrates the process.

Pseudocode describing the refinement process for a single path is shown in Figure 3;
the process is repeated for each path in a dendrite. One advantage of doing the refine-
ment on a per-path basis is that the high-resolution graphs are individually small, and
they are temporary, and hence memory usage is not overly onerous. A side-by-side
comparison between a coarse dendrite and a refined dendrite is shown in Figure 4. The
presence of the lattice is much less visually obvious in the refined version. The refine-
ment can also be applied to 3D lattices to create a high-resolution 3D model.

Fig. 4. Left image pair: a coarse path, and a refined path computed inside a finer lattice around
the coarse path. Right image pair: a dendrite generated on a coarse graph, and a refined version
of the coarse dendrite.
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Input: weighted graph G, containing nodes N and edges E; an
initial generator Z; parameters α and β; initial number of centres
m; initial distance d. Output: a list of nodes P on the fractal
dendrite.
1. Set P to null; append Z to P.
2. Repeat the following while d > ε.
2A. Find m centres, at distances ≈ d from Z.
2B. Find a path from each centre to Z. Append each path to P.
2C. Set m to m∗β.
2D. Set d to d/α.
2E. Set Z to P.

Fig. 5. Pseudocode for creating fractal dendrites

3.2 Fractal Site Placement

A fractal dendrite can be created through an iterative process involving repeatedly
adding new endpoints, and the corresponding paths, to an existing structure. In the first
iteration, the structure is a single root node. In later iterations, we compute paths to the
entire structure obtained at the previous iteration.

At each iteration, we increase the number of endpoints to be placed by a branching
factor β. At the same time, the maximum distance from the generators that each new
endpoint is placed is reduced – divided by a factor α, the attenuation factor. The process
continues until the maximum distance is less than some small value, say 2 pixels. Notice
that the number of iterations therefore depends on the attenuation factor; a larger factor
means that the maximum distance decays to a value beneath the threshold more rapidly,
resulting in a sparser dendrite. Figure 6 gives a visualization of this process; pseudocode
describing the process is given in Figure 5. Images showing different fractal dendrites
are shown in Figure 7.

We also slightly modify the nature of the generator. In the previous algorithm, the
generator was considered to be at distance zero. Here, we compute different distances
for different nodes on the generator: the distance of a point is some factor less than one
(say 0.5) times its distance as calculated in the previous iteration of best-first search. The
effect of introducing this factor is to cause later paths (those computed on a later itera-
tion) to meet earlier paths at an angle, seemingly anticipating the direction of growth of
the dendrite. This tendency can most clearly be seen in the early iterations of Figure 6.

3.3 Converting to Geometry

In this paper, we employ one of two options for converting the description of path
locations to geometry. One option is to use the paths nearly directly, and render each
node on the path as a simple geometric object, e.g., a sphere. This approach has the
advantage of extreme simplicity.

Another option is to create a distance field from the structure and extract an isosurface
from the field. The distance field can be computed using the machinery we already have
in place: using the dendrite as the generator, we make a pass of best-first search over the
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Fig. 6. A fractal dendrite (four iterations). Initially, we have only a few branches, but successively
more endpoints are placed at successively smaller distance from the structure.

Fig. 7. A few fractal dendrites, with different parameters governing the branching factor and dis-
tance limit at each iteration. Right to left: α = 2,1.5,1.2; top to bottom, β = 2,3,4. All dendrites
were built with three iterations.

lattice. The best-first search visits each node in the lattice, populating it with the least-
cost path distance from the generators. The resulting distance field can then be converted
to geometry using an existing isosurface extraction algorithm such as marching cubes.
A visualization of the 2D isosurfaces from a dendritic generator are shown in Figure 8.

A third option, not shown, is to interpret the scalar field of distance values as a
height field or displacement field. With this option, the lattice becomes the mesh; the
x and y coordinates of a mesh vertex come from the 2D location of the lattice node,
and the z coordinate comes from the distance value stored in the node. This approach
might be suitable for terrain synthesis, for example; approximating a general terrain by
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Fig. 8. Two-dimensional isocontours from a dendritic generator. A surface can be generated by
taking one of these contours.

Fig. 9. “Rock” mesh from lattice segmentation

a height field is common in computer graphics. Venation patterns in leaves might also
be imitated by treating the distance values as heights.

3.4 Creating Solid Objects with Region Marking

The same workflow used to create dendritic shapes can also be used to generate irregular
solid objects. Specifying multiple disjoint nodes as generators, and keeping track during
the best-first search process of which site is nearest a given lattice node, has the effect
of segmenting the volume. One region is created for each generator node, consisting of
all the points nearest that node. A mesh marking the boundary of one of these regions
is shown in Figure 9.

The regions from the segmentation are locally irregular but have a simple overall
shape. We have referred to them as “rocks” because they resemble broken pieces of
some hard and not necessarily homogeneous material.
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Fig. 10. Left: dendritic form generated by diffusion-limited aggregation. Right: imitation of DLA
with a path planned fractal (4 iterations).

4 Results and Discussion

We next show some further results created by our method, in the form of images and
models. We have already shown several examples of simple dendritic forms, from Fig-
ure 1 onward. In this section we give more elaborate models and provide some commen-
tary on the types of models that our approach can generate. We give unadorned skeletal
models and meshes; more sophisticated rendering, including texture mapping, could
improve the final images, but in this paper we are focusing on the models themselves.

We can readily create dendritic forms, i.e., branching structures. Branching comes
about in our model owing to the use of a common graph for all pathing queries: paths to
nearby destinations will often share the early portion of their route, so that a single path
appears to emerge from the source, branching when the two previously overlapping
paths deviate. The same reasoning, plus the fact that we use a common set of source
nodes for all paths, means that the paths will never cross one another. Given a consistent
tie-breaking mechanism, there is a unique path from the source nodes to any node in
the graph; hence, two paths that meet do not cross, but rather share the same path the
rest of the way to the generators.

We have set out to imitate the dendritic forms of DLA, and the results of this imitation
are shown in Figure 10. The two models are visually extremely similar, although a
detailed investigation would reveal the limited nature of the path planned dendrite (it is
fractal only over the small range of scales explicitly programmed in). However, to the
unaided human eye the structures look extremely similar; the pragmatic difference is
that the path planned dendrite took about 100 times less computer time to create.

We used our system to build a model of staghorn coral, shown in Figure 11. The coral
model was created by manually placing endpoints in a 3D graph; the points were not
chosen to exactly duplicate the input model, but to give a visually similar appearance,
i.e., the synthetic coral could plausibly have come from the same underlying growth
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Fig. 11. Left: real coral. Right: coral generated using path planning.

Fig. 12. “Hello” written with dendrites

process. Despite the small amount of information provided to the modeler (only the
endpoints of the branches were specified), the synthetic coral model resembles the real
coral quite well.

The synthetic image was rendered using Pixie (pixie.sourceforge.net), with the high-
frequency structure (thorns) on the surface of the branches obtained from a Renderman
displacement shader.

Figure 12 demonstrates one way to exploit the graph to give high-level control over
the dendritic shapes. In generating this figure, we created a separate graph for each
letter, and arranged the nodes of the graph into the shape of the desired letter. The
resulting paths filled a portion of the space within the graph, causing the letter to become
visible. A similar mechanism could be used to generate three-dimensional forms, in a
manner akin to the synthetic topiaries of Prusinkiewicz et al. [13]. Our 2D result is
comparable to the lichen-writing of Desbenoit et al., who distributed seeds for DLA in
letter-shaped regions.
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Fig. 13. Left: competition for space on the part of two lichens. Middle: endpoint placement pro-
ducing a shape resembling lightning. Right: a mossy version of the peppers image.

Competition for space is one of the phenomena simulatable within the framework
of open L-systems. We can imitate this phenomenon within our framework by placing
multiple disjoint generators within our graph and scattering endpoints nearby. An ex-
ample of competition is shown in the left of Figure 13. Although the dendrites do not
actually communicate during the path planning process, the dendritic forms appear to
exhibit an avoidance behaviour.

A dendritic form akin to lightning is shown in the middle of Figure 13. For this
2D example, little needs to be changed from the typical 2D dendrites we previously
showed: the generator is a single node at the top of the image, and we initially placed
a small number of endpoints at the bottom of the image, producing the main lightning
strokes. Subsequently, we added more endpoints in the vicinity of the main strokes, with
a bias towards placing them lower in the image. This approach can straightforwardly be
extended to 3D by using a 3D lattice.

The lightning example illustrates another control mechanism present in our frame-
work: the endpoints of the dendrite can be specified exactly. For example, lightning
might be made to strike a specified “lightning rod” location. In a computer game con-
text, there might be a lightning weapon with user-specified targets. DLA can offer

Fig. 14. Lichen on rock, both generated with our method
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Table 1. Table of model timing results

Model lattice endpoints time

Simple dendrite 6002 15 0.94 s
Fractal dendrite 5122 8930 7.55 s
Coral (no refinement) 503 11 1.06 s
Coral (with refinement) 503 24 3.06 s

control over the endpoints of the main branches (by starting random walkers from the
location the branch should reach), but control over positions of secondary branches is
more difficult to achieve.

We can produce forms resembling moss by having a plane or other surface as a gen-
erator, and computing paths to destinations near the surface. The right part of Figure 13
shows a large number of paths computed up from the plane. In this example, paths are
rendered as chains of line segments with lighting given by the variant of deep shadow
maps [11] proposed by Bertails et al. [2], and the colors of the paths taken from the
peppers test image. Hair or fur could be generated similarly.

Figure 14 shows a lichen growing over a rock. Both the lichen and the rock models
were generated using our method: the rock mesh by segmenting a lattice as described in
section 3.4, and the lichen by placing both the path endpoints and the dendrite generator
on the rock and forbidding paths to enter interior rock nodes. Notice, therefore, that the
modelled lichen is able to leave the surface of the rock briefly before returning; had
we so chosen, we could easily have constrained the lichen to the rock face, simply by
considering only nodes on the rock boundary. The rock and lichen models in Figure 14
demonstrate the flexibility of our approach, with two quite different models generated
by the same underlying process.

Table 1 shows timing results for our method. The figures in Table 1 give times for
model construction; these models were either shown directly or were rendered using
spheres. Timing results are given for a 1.8GHz P4 with 512 MB RAM. When isosur-
face extraction is used to create a mesh for rendering, the marching cubes algorithm can
take an additional three to seven seconds depending on the complexity of the resulting
mesh (creating a surface from a 1283 distance field).

For 2D dendrites, the sub-one second modeling time can be considered interactive,
so that different parameter settings can be experimented with live. The 3D modeling
times, albeit on a somewhat coarser grid, are nonetheless only around 10 seconds; for
comparison, the lightning simulations of Kim and Lin require hours, and the ice simula-
tions (in 2D) still require at least a few minutes. Desbenoit et al. [4] give times ranging
from 1 second to nearly 500 seconds, depending on the complexity of the generated
lichen. The DLA image shown in Figure 10 was generated at a resolution of 500× 500
with 25000 particles; the basic random walker algorithm was used on a 3.2GHz P4 and
required about 7.5 minutes to complete.

5 Conclusions

We have presented a fast, simple method for generating dendritic forms. Because path
planning has been well studied in computer science, many standard algorithms exist and
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should be familiar to computer graphics practitioners; in consequence, our algorithm is
easy to implement. The path planning formulation creates dendrites extremely quickly:
less than a second for simple structures, and less than 10 seconds for complex fractal
and 3D structures. Orders of magnitude more time are required for DLA and other
reported systems for creating dendritic shapes.

The range of natural objects expressible as dendritic forms is great. In addition to
dendrites, the path planning approach can generate irregular solid objects by segmenting
an input mesh. The versatility of dendrites, combined with the ability to generate irregu-
lar solid models, gives our method potentially wide applicability. Unlike L-systems, the
path planning framework is not very mature, and much remains to be discovered. For
example, future work can address the endpoint placement process, perhaps by distribut-
ing them procedurally in a more sophisticated way. We can also plan paths within a
general graph, rather than always using regular lattices; removing this restriction could
produce even more natural structures without enormously increasing our node budget.

In this paper, we have given a broad overview of the dendritic shapes our method can
generate. One avenue for future work is to narrow in on specific phenomena and provide
specific advice and parameters for generating each particular phenomenon. Lightning,
trees, lichens, and terrains have long been of interest in computer graphics, and we find
moss a particularly intriguing direction. Other kinds of structures, such as cracking,
venation, and crystals, are also possible.

We would like to investigate ways of achieving dynamic dendrites within our frame-
work, since animations of growing dendrites are sometimes desired. One possibility is
to compute the completed dendrite, and use the costs associated with the path nodes to
determine the time at which a given node should be added to the growing dendrite.

Acknowledgements. Thanks to the IMG lab at the University of Saskatchewan for
helpful suggestions. Particular thanks to Peter O’Donovan for the mossy peppers image.
This work was supported by NSERC RGPIN 299070-04.
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Abstract. This work presents a novel approach for proximity queries in dynamic
point sets, a common problem in computer graphics. We introduce the notion of
Orthant Neighborhood Graphs, yielding a simple, decentralized spatial data struc-
ture based on weak spanners. We present efficient algorithms for dynamic inser-
tions, deletions and movements of points, as well as range searching and other
proximity queries. All our algorithms work in the local neighborhood of given
points and are therefore independent of the global point set. This makes ONGs
scalable to large point sets, where the total number of points does not influence
local operations.

Keywords: Dynamic point sets, proximity queries, range searching, geometric
spanners, particle systems.

1 Introduction

In computer graphics, many methods rely on dynamic point sets. One example are
particle systems, where individual particles can be considered as points moving through
space [1]. A more complex example are multi-agent systems, where each object has
some complex behavior [2]. A common task in these systems is to find all neighbors
in a defined neighborhood or the nearest neighbor for a particle or agent. This paper
introduces a novel method to efficiently handle such proximity queries in dynamic point
sets.

Our goal is to develop a simple and efficient data structure that maintains dynamic
point sets. It should provide fast access to the local neighborhood for each point. More-
over, it should support big point sets commonly occurring in particle or agent systems.
Popular approaches for this problem include (hierarchical) space partitioning tech-
niques like octrees or bucket grids. However, these methods are either inflexible, do
not perform well in dynamic settings, or do not scale well for large point sets.

We present an alternative paradigm which provides a flexible, decentralized approach
for proximity queries in dynamic point sets. The main idea is to use a very simple,
graph-based data structure with low memory footprint. We provide efficient algorithms
which act in the local neighborhood of the points. This makes them input and output
sensitive, as well as scalable to large point sets. Therefore, local changes in the point
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configuration only result in local changes in the data structure. Local operations like
searching all neighbors in a given radius or moving a point a small (local) distance
do not depend on the total size of the point set. This makes our approach suitable for
dynamic particle or agent systems, where typical movements are relatively small and
local.

Our approach is novel and poses many unresolved questions. The goal of this paper
is to introduce the basic ideas and to describe the principles of our algorithms. We leave
a thorough analysis as well as an evaluation and the application of our approach for
future work. Finally, we restrict our problem in this paper to the 2D case, i.e., to planar
point sets.

2 Background

Tasks like locating points, finding their neighbors or maintaining dynamic point sets
are a common problem in computer graphics and computational geometry. Numerous
approaches have been introduced and analyzed, making spatial data structures an elab-
orate area of research. We restrict our treatment of related work to the most established
techniques used in computer graphics.

Uniform Space Subdivision. A simple way to speed up proximity queries [2] or colli-
sion detection [3] is to divide the space into equally sized buckets where the objects are
stored. Objects within a given range are found by considering only the intersected grid
cells. Although simple and often effective, this technique has a relatively large memory
footprint and doesn’t work well in settings with varying search radius or inhomoge-
neous point distributions.

Spatial Hashing. Instead of storing the grid explicitly, spatial hasing employs a hashing
function based on the grid cells to store objects in a hash table. This way, sparse and
possibly infinite scenes can be managed [4]. However, the size of the grid cells still de-
pend on the expected search radius, so that the technique becomes inefficient for range
searching with varying search radius.

Quad- and Octrees. A widely used technique to overcome these problems is to adap-
tively subdivide space by quad-trees (resp. octrees). An overview of different variations
gives Samet [5].

BSP- and kd-Trees are another class of popular techniques, supporting very flexible
space subdivision and also working in higher dimensions [6].

Bounding Volume Hierarchies. Instead of subdividing space, bounding volume hier-
archies like OBB-Trees [7] or BD-Trees [8] approximate the input data hierarchically
to accelerate collision detection, for example.

Although providing fast (logarithmic) access to arbitrary leaf objects, all these tree-
based approaches have a global (centralized) structure and therefore depend on the to-
tal number and structure of points. Instead, we seek for a data structure where local
operations do not depend on the global structure. In general, tree-based approaches
have also difficulties maintaining dynamic objects like moving point sets. Often the
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trees become inefficient or large parts have to be rebuild after a series of insertions or
deletions.

3 ONGs

The main inspiration for our approach are the principles of swarm behavior and swarm
intelligence [9]. In biology, there are various examples of large groups of animals like
flocks of birds or schools of fish which rapidly move in global formations without colli-
sions [10]. However, a single animal has neither the mental nor physical ability to track
all other animals and maintain a global view on the swarm as it steers through space.
Instead, every animal only knows its local neighborhood, i.e., nearby animals and the
local environment. Every animal acts solely based on this local information. However,
the whole swarm is connected through various neighborhoods. This way, global infor-
mation can be distributed using local structures. Therefore, global patterns can emerge.

We adopt this principle to build a data structure for point sets where each point
tracks a limited, local neighborhood. This results in a decentralized data structure which
provides local information. In addition, each point must have access to arbitrary large
(global) neighborhoods, if needed. This way, every point indirectly knows the total point
set. Thus, we have two main requirement:

– each point has a constant number of neighbors
– each point must have access to every other point

To meet the first requirement, we store pointers to all local neighbors for each point.
The result is a directed geometric graph, where the vertices correspond to the points of
the point set, and arcs represent the neighborhood relationships.

The second requirement implies that the graph has to be strongly connected. There
must be a path (i.e., a chain of neighbors) connecting each vertex with every other ver-
tex. To meet this requirement, we have to consider which vertices exactly are neighbors
and how many neighbors are required for each vertex.

To answer this question we use results about “t-spanners” and “weak spanners” from
Fischer et al. [11,12,13]. We first review the relevant concepts. Geometric spanners
are important data structures in computational geometry, because they approximate the
complete graph using only O(n) edges, where n denotes the number of vertices [14].
In our context, this means that we can approximate global information about the point
set with local neighborhood relationships. A geometric graph G = (V, E) is called t-
spanner, if for each pair of vertices (u, v) ∈ V there exists a path in E, which is no
longer than t times the direct distance between u and v. Thus, the (relative) length of
the path of any pair of vertices is bounded by the stretch factor t. The complete graph is
obviously a t-spanner with t = 1. However, it has an out-degree of n − 1 and therefore
takes O(n2) space. Instead, we need a low and constant out-degree for our data structure
to be output sensitive.

One way to construct a t-spanner is to divide the space around each vertex p into k
cones and to create a directed edge from p to the closest vertex in each cone [15]. It
can be proved that the resulting graph is a t-spanner for k > 6 cones [16]. Fischer et
al. improve this value to k ≥ 4 by introducing “weak spanners”. However, these graphs
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Fig. 1. Basic construction of ONGs

only satisfy a weak spanner property. Here, not the path length between any vertex
pair is bounded, but the (Euclidean) distance from any vertex on the path to the start
vertex. Note that this graph must be strongly connected. In the prove of this property
for k ≥ 4, Fischer et al. also show a way how to actually find a short path between any
two vertices.

We use the weak spanner construction from Fischer et al. in a slightly adapted ver-
sion. We divide the (planar) space around each point p into the four quadrants Qp

j , j ∈
{NE, NW, SE, SW} defined by the coordinate axes. We have to take care about the
coordinate axes themselves and assign them to unique quadrants. Fischer et al. intro-
duced a consistent scheme for this, as illustrated in figure 1(a). We assume that there are
no coincident vertices. We use the Manhattan-metric dM (p, v) = |px − vx| + |py − vy|
to find the nearest points vj ∈ Qp

j . The motivation to use the Manhattan-metric is ex-
plained in section 4.5. Finally, we store each vj as a local neighbor for p. Figure 1(a)
illustrates this concept. The resulting structure also generalizes to higher dimensions.
Therefore, we call it “Orthant Neighborhood Graph” (ONG)1. This graph has appealing
properties:

– Constant Outdegree. Each vertex has at most four local neighbors. A graph with n
vertices has at most 4n edges.

– Quadrant-based Partition. By aligning the cones with the four quadrants we can
easily assign points to cones using coordinate comparisons. Employing only simple
comparisons of constant numbers also makes our approach robust.

– Simple Metric. The Manhattan-metric is simple and cheap to compute.
– Weak Spanner. The resulting graph is strongly connected and has the weak spanner

property.

To verify that ONGs are strongly connected, we briefly sketch the main argument
from the prove presented by Fischer et al. [12]. Consider two vertices s and t as illus-
trated in figure 1(b). To construct a path from s to t, we consider the quadrant Qs

t of
s, to which t belongs. By definition, s must have a neighbor n for this quadrant. If this

1 The concept of quadrants and octants generalized to arbitrary dimensions is called “Orthant”.
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Fig. 2. Cases for the location of neighbor n for vertex s

neighbor is t, we are done. Otherwise, there must be a neighboring vertex n closer to
s than t. We show, that by recursively following the neighbor n, we incrementally get
closer to t, until we reach t. Let Bt = {x ∈ R

2 : dmax(t, x) ≤ dmax(t, s)} be the
square defined by the maximum-metric dmax(u, v) = max(|ux − vx| , |uy − vy|) (see
figure 1(b)). Then, the neighbor n must be contained in Bt. There are three cases:

1. dmax(t, n) < dmax(t, s): The neighbor is inside Bt and therefore closer to t. (See
figure 2(a).)

2. dmax(t, n) = dmax(t, s) and Qs
t = Qn

t : s is on the border of Bt and t is in the same
quadrant with respect to n. Then, n is still nearer to t according to the Manhattan-
distance. (See figure 2(b).)

3. dmax(t, n) = dmax(t, s) and Qs
t �= Qn

t : s is on the border of Bt and t has changed
the quadrant with respect to n. Then, we do not come closer to t and Bt stays the
same. However, in the next step of the path, the neighbor of n cannot be longer on
the border of Bt, because our assignment of coordinate axes to quadrants as shown
in figure 1(a) does not permit this. Therefore, Bt will get smaller in the next step.
(See figure 2(c).)

This shows that the square Bt gets smaller or stays the same with each step along
the path. However, cases 2 and 3 ensure that Bt can only stay constant for a finite
number of steps. Therefore, the path will finally reach t. We conclude this section with
the following property of ONGs, which is important for the algorithms presented in the
next section:

Corollary 1. Given a vertex s in an ONG, any vertex t in this ONG can be reached by
recursively following the neighbor of the quadrant, in which t is located.

4 Algorithms

Having introduced the fundamental structure of ONGs in the previous section, we now
describe algorithms for the dynamic construction of ONGs. We first present the high
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level algorithms, then the low level procedures and finally an efficient algorithm for
(localized) range searching using ONGs.

4.1 Insertion

First, we introduce two notations:

– neighp
q denotes the neighbor of vertex p saved for quadrant q

– quadrantp(s) returns the quadrant of p in which vertex s is located

To insert a new vertex in an ONG, we have to insert and change certain arcs of the
graph, so that the ONG stays consistent. We use the following algorithm:

Procedure. Insert(Vertex s, Vertex p)
Input: a starting vertex s that is already inserted
Input: the new vertex p
if ONG is empty then1

insert p as the first vertex;2

return3

for each quadrant q of p do4

sq = search some point in q, starting at s;5

neighp
q = nearest neighbor in q, starting at sq;6

if neighp
q �= ∅ then s = neighp

q ;7

search all vertices ri for which p is the new nearest neighbor;8

for each ri do9

Quadrant q = quadrantri(p);10

neighri
q = p;11

We first check if the ONG is empty. In this case, p is the only vertex and there
is nothing to change (lines 1-3). Otherwise, we search the nearest neighbors for each
quadrant of p using the algorithm of section 4.4, and save them as neighbors (lines 4-
6). By searching the nearest neighbors, we actually localize p, i.e., we determine its
local neighborhood. Note that we need a given vertex s, where we begin our search
for start vertices sq in every quadrant, which are then used to initialize the nearest
neighbor search. If we found a nearest neighbor, we use it as the starting point for
the next quadrant, because it is probably close to the nearest neighbor in this quadrant
(line 7).

Afterwards, we have to find all vertices ri in the ONG, which have p as their new
nearest neighbor (line 8). Section 4.5 describes an algorithm for this. Finally, we update
these vertices and store p as their nearest neighbor in the according quadrant. Note that
we first find all vertices ri before changing the topology of the existing graph. If we
would change the topology (i.e., store p as the new nearest neighbor) immediately after
we found one ri, the topology wouldn’t be consistent anymore, breaking the assump-
tions for subsequent queries. Therefore, we strictly separate queries using the ONG
from changing the ONG.
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4.2 Deletion

To delete a vertex p from the ONG, we have to change all arcs pointing to p. We do this
with the following algorithm:

Procedure. Remove(Vertex p)

search all vertices ri for which p is a nearest neighbor;1

for each ri do2

qi = quadrantri(p);3

si = search second nearest neighbor in qi;4

for each ri do5

neighri
qi

= si;6

Note that we don’t have to localize p this time, because the local neighborhood (i.e.,
the nearest neighbors) are already known. We first find all vertices ri, for which p is
a nearest neighbor (line 1). This is similar to line 8 of the insert algorithm and also
detailed in section 4.5. For all vertices ri we have to remove p as a neighbor and store
the second nearest neighbor instead. Again, we have to separate the queries for the
second nearest neighbor (lines 2-4) from the change of topology (lines 5-6). This results
in a consistent ONG where no arc points to p anymore. Therefore, p can be removed.

4.3 Movement

Our goal for ONGs was to design a spatial data structure which can be used to maintain
particle or agent systems. A typical property of such systems is that the entities (i.e.,
the vertices) are moving. We handle this action by simply deleting the vertex and re-
inserting it at the new position:

Procedure. Move(Vertex p, Vector v)

Vertex s = some neighbor from p;1

Remove (p);2

move p according to v;3

Insert (s,p);4

This algorithm benefits from small movements of vertices. We take some (old) neigh-
bor of vertex p (line 1) as the starting point for the re-insertion in line 4. If the new
position of p is relatively close to the old position, the localization step of the insert
procedure will be cheap (see next section). This way, the algorithm becomes input sen-
sitive: local movements only traverse and change local parts of the ONG. The down-
side is that chaotic, global movements traverse very large parts of the ONG, degrading
performance. However, particle and agent systems mostly exhibit small movements.
Therefore, ONGs will be suitable for such systems.

4.4 Neighbor Searching

One of the first steps of the insert algorithm is the localization of the new point p, where
we search for the nearest neighbors for each of its quadrants. This section presents a
simple and effective algorithm for this.
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In contrast to centralized data structures like quad- or kd-trees, ONGs do not provide
a mechanism to quickly locate arbitrary points in the point set. Instead, we have to
iteratively traverse the local neighborhood of certain vertices until we find the nearest
neighbor for p. The idea is to take a starting vertex s and then “walk across” the graph
in the direction of p, until no closer vertex can be found anymore. We need two more
concepts for this algorithm:

– Search Regions. A search region is a rectangular region representing the “undis-
covered” space. Only in the search region new results can be found. If the search
region is empty, we have found all result points. We can find all vertices in a
search region by using corollary 1: given a vertex p, we can find all vertices in the
search region by recursively following all neighbors assigned to the quadrants
which intersect the search region.

– Vertex Flags. To avoid loops when traversing the graph, we mark visited vertices
with a flag, denoted as flagp for vertex p. Before finishing the algorithm, we have
to clear the flags again.

We can now formulate our algorithm for finding the nearest neighbor to a point p
(which is not yet inserted) in the quadrant according to s, starting at s:

Function. NearestNeigh(Point p, Vertex s)
Output: nearest Vertex to p in the quadrant of s
Quadrant q = quadrantp(s);1

float d = dM (p, s) ; // init distance2

repeat3

SearchRegion R = (square centered at p with side length 2d) ∩ q;4

set flags;5

for each quadrant qi �= q do6

Vertex n = neighs
qi

;7

if nnInternal (n) then break; // for8

clear all flags;9

until no nearer neighbor found ;10

return s11

Local Function nnInternal ( Vertex n ):12

if n = ∅ ∨ flagn is set then return false13

Quadrant qn = quadrantp(n);14

if qn = q ∧ dM (p, n) < d then15

s = n; // new nearest vertex16

d = dM (p, n);17

return true18

set flagn;19

for each quadrant qi �= qn do20

if R cuts qi ∧ nnInternal (neighn
qi

) then21

return true22

return false23

First, we save the quadrant q, for which we search the nearest neighbor (line 1). Then,
we save the distance d of the nearest neighbor yet found (which is s, at the beginning the
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Fig. 3. The black dots highlight the points visited during a nearest neighbor search. The path
between the start point in the lower left and the target point in the upper right (cross) is roughly
linear.

starting point). Afterwards, we set up a search region R, where all possible nearer neigh-
bors to p could be found (line 4). Note that R ⊃ {x : x ∈ q ∧ dM (x, p) ≤ dM (s, p)}.
We then search for nearer neighbors by calling nnInternal for each quadrant qi of
s. Note that we don’t have to search in quadrant q, because all points in this quad-
rant must have a greater distance to p than s. If nnInternal finds a new neigh-
bor, it returns true and we start our search again with the new, reduced search region.
If no new nearer neighbor could be found, we are finished and return the last result
point s.

After ensuring that the current vertex n is not empty and was not visited yet (line 13),
the function nnInternal checks if n is in the right quadrant and is nearer to p than
the current nearest vertex s (lines 15-17). If this is not the case, it recursively performs
a simple depth-first search to find other vertices. Note that we only have to search in
quadrants that cut the search region.

The algorithm described above can be improved by a simple heuristic. Given the
current vertex s (or n in nnInternal), chances are high that a new nearest neighbor
can be found by following the opposite quadrant of qs (respectively qn), because in
this quadrant the target point p is located. Therefore, we first search in these quadrants
before searching in the remaining ones. This way, we quickly reduce the search region
and follow a roughly linear path to the target point p (see figure 3). If the initial starting
point s is already close to the nearest neighbor, this path will be very short and only
points in a local neighborhood of s resp. p will be traversed. Thus, our algorithm benefits
from small movements and local insertions.

In line 4 of the remove algorithm (section 4.2), we search for the second nearest
neighbor in a given quadrant. This can be done with a slightly adapted version of
nnInternal. We only have to extend the condition in line 15 to neither accept p
nor neighp

q as a new nearest vertex. This way, the search is aborted after the second
nearest neighbor has been found.

We also use a similar algorithm to find (arbitrary) points in a given quadrant, as
required in line 5 of the insert algorithm. In this case, we set the search region to
match the quadrant and use a search similar to nnInternal to find a point in this
region.
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4.5 Reverse Neighbor Searching

One step of the insert algorithm of section 4.1 is to search for all vertices ri, for which
a point p is the new nearest neighbor. We say that the vertices ri will reference to p
after the insertion. We use a similar step in line 1 of the remove algorithm (section 4.2),
where we search all vertices which are referencing to a given vertex p. In general,
this problem is called “reverse nearest neighbor searching” [17]. Here, we adapt the
problem to report all vertices ri, which have p as their nearest neighbor in one of their
quadrants.

In the context of ONGs, the number of such vertices can be arbitrary large and de-
pends on the vertex distribution in the local neighborhood around p (consider a vertex
surrounded by a circle of other vertices). However, the average number of referencing
vertices for each vertex in an ONG is (at most) four, since the out-degree of every vertex
is (at most) four.

The idea for our reverse nearest neighbor algorithm is to use a breadth-first search
(BFS) constrained by corollary 1 and the two following observations:

Corollary 2. Let s be a vertex located in quadrant qs of vertex p. Then, every vertex in
the same quadrant qs of s must be closer to s than to p (see figure 4(a)). Therefore, no
vertex in this area can reference to p.

Corollary 3. Let s and p be two vertices and v = s − p the difference between them.
Without loss of generality, we assume that s is in the upper-right quadrant of p. If
|vx| < |vy|, then all vertices in the upper-left quadrant of p above s are closer to s than
to t. Analogously, if |vx| > |vy|, then all vertices in the lower-right quadrant of p on
the right of s are closer to s than to t.

p

q s

s

(a)

p

s

(b)

Fig. 4. p cannot be the nearest neighbor for vertices in the shaded areas. The bold dashed line in
(b) marks the Voronoi-edge between s and p for the Manhattan-metric.

This observation can be easily verified by considering the Voronoi diagram for the
Manhattan-metric, as illustrated in figure 4(b), where all points above s are also above
the Voronoi edge. Note that this observation is only possible with the Manhattan-metric,
which was the main reason to use it for ONGs.

We can now present our reverse nearest neighbor algorithm (ReverseNN), report-
ing all vertices which have p as their nearest neighbor.
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Procedure. ReverseNN(Vertex p)

List Q = empty vertex list;1
SearchRegions R[4] = four open rectangles corresponding to the quadrants of p;2
set flagp;3
for each quadrant qi do4

Vertex n = neighp
qi

;5
if n �= ∅ then6

set flagn;7
clipSearchReg (n);8
append n to Q;9

repeat10
Vertex s = pop front element from Q;11
Quadrant qs = quadrantp(s), q̂s = opposite(qs);12
if neighs

q̂s
= p then report s as a result;13

for each quadrant qi do14
Vertex n = neighs

qi
;15

if (n �= ∅) ∧ (flagn is not set) ∧ (qi �= qs) ∧ (R[1...4] cuts qi) then16
set flagn;17
clipSearchReg (n);18
append n to Q;19

until Q is empty ;20
clear all flags;21

Local Function clipSearchReg ( Vertex n ):22
Quadrant qn = quadrantp(n), Vector v = n − p;23
if |vx| < |vy | then24

Quadrant q = qn inverted in x-direction;25

clamp R[q] in y-direction;26

else27
Quadrant q = qn inverted in y-direction;28
clamp R[q] in x-direction;29

The algorithm begins by creating a search region for every quadrant (line 2). Initially,
every search rectangle is equivalent to its quadrant and therefore on two sides open.
Then, all neighbors of p are inserted into the BFS queue (lines 4-9). In addition, the
search regions are reduced by calling the function clipSearchReg, which employs
corollary 3 to clip the search rectangles for every neighbor.

Afterwards, we process every vertex s from the queue (lines 10-20): If s has p as its
nearest neighbor, it is reported as a result (line 13). Note that p can only be the neighbor
for s in the opposite quadrant of qs. Then, we consider all neighbors of s which have
not been visited yet and which correspond to quadrants intersecting one of the search
regions (R[1...4]). Following corollary 2, we don’t have to consider neighbors in qs

(line 16). After clipping the search regions, we include each such neighbor into the
BFS queue (lines 17-19). We repeat these steps until the BFS queue is empty and no
more referencing vertices could be found. Figure 5(a) illustrates a typical example.

We use a variation of the algorithm above to search all vertices which will reference
to a new vertex p after insertion. The only differences are line 5, where we take the
nearest neighbors for p found by NearestNeigh, and line 13, where we check, if p
is nearer than the current neighbor.
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(a) (b)

Fig. 5. The black dots highlight the points visited during a reverse nearest neighbor search (a)
and range searching (b) for the point in the middle. The shaded square in (b) represents the query
region.

4.6 Range Searching

Finally, the main purpose of ONGs is to provide proximity queries. The nearest neigh-
bor for any vertex (according to the Manhattan metric) can be simply found by com-
paring the four neighbors of each quadrant. Another common query in particle or agent
systems is to find all points in a given radius. We formulate this as a (circular) range
searching problem: given a vertex p, find all vertices nearer than a certain distance r.
An overview on this topic gives [18].

We approximate this problem by finding all neighbors in a square with side length
2r, centered at p:

Procedure. RangeSearch(Vertex p, float r)

List Q = empty vertex list;1

SearchRegion R = square centered at p with side length 2r;2

set flagp;3

while p �= ∅ do4

if p ∈ R then report p as a result;5

for each quadrant qi do6

Vertex n = neighp
qi

;7

if n �= ∅ ∧ flagn is not set ∧ R cuts qi then8

set flagn;9

append n to Q;10

p = pop front element from Q;11

clear all flags;12

This algorithm implements a simple breadth-first search (BFS), starting at p. Using
BFS for range searching with (weak) spanners was introduced by Fischer et al.[12].
They use the (weak) spanner property to constrain the BFS to a certain region around
p. In contrast to this approach, we use corollary 1 to constrain the BFS: we only have
to continue the search in quadrants which intersect the search region R. This results in
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Fig. 6. A complex example of an ONG for a point set with appr. 750 points

much fewer vertices we have to visit. In typical examples, there are only few visited
vertices which are not contained in the query rectangle (see figure 5(b)).

Using this algorithm, we can also provide proximity queries for other metrics. For
example, the Euclidean nearest neighbor to p can be found by searching all vertices
nearer than the nearest neighbor nM based on the Manhattan metric. We do this by per-
forming a range search around p with radius dM (p, nM ) and comparing the distances
of the result points according to the Euclidean metric.

5 Discussion

In the following we give preliminary results for our approach. We have implemented
all presented algorithms and data structures in C++. Figure 6 shows a complex ONG
generated with our system.

Table 1 gives timings of some experiments on a 3GHz PC using our prototypical
implementation, where the code was not optimized for speed. First, we inserted a large
number of points with random distribution in arbitrary order. The table shows that these
can be quickly incrementally inserted into an ONG. The incremental removal of all
points is even faster, because no localization step (as explained in section 4.4) is needed.
If every new point would be inserted nearby a known vertex, the performance would
also increase, because the localization step would be cheaper. In the next experiment
we compare the cost of locally moving a point in small and large point sets consisting
of 1 000, 10 000, and 100 000 points. The timings for all three cases are nearly equal.
Finally, we do a range search in small and large point sets. We adapt the radius, so that
100 points are found each time. Again, the timings are nearly equal. Therefore, the total

Table 1. Timings for experiments with ONGs for point sets of different size. The timings in ms
are averaged over 10 000 iterations.

Point set 1 000 10 000 100 000
Incremental build 0.031 s 0.367 s 6.141 s
Remove all points 0.027 s 0.309 s 5.694 s
Point movement 0.055 ms 0.059 ms 0.058 ms
Range searching 0.109 ms 0.111 ms 0.110 ms
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number of points in the ONG does not influence the cost of local operations like local
movements or range searching. This confirms the scalability of ONGs.

6 Conclusions

We have introduced ONGs, a new spatial data structure that supports proximity queries
in dynamic point sets. The basis for ONGs are weak spanners, which ensure that stor-
ing the nearest neighbor for each quadrant results in a strongly connected graph. ONGs
are decentralized in that all information is distributed on the whole point set. We pre-
sented different algorithms that work on the local neighborhood of given points. This
allows dynamic insertions, deletions and movements of points as well as range queries
independent of the size of the point set. Our algorithms are input and output sensitive:
The cost of moving a point is low for small movements, but grows as it moves farther.
Also, the cost of range queries depends of the number and the neighborhood of the
result points. These properties make ONGs applicable to systems consisting of a large
number of points, like particle or multi-agent systems.

7 Future Work

There are many areas of future work and open questions for ONGs. The approach and
the presented algorithms have to be analyzed and evaluated in more detail. A compari-
son with other techniques (like quad- or kd-trees) will show the usability of ONGs.

We want to adopt ONGs to 3D and higher dimensions. In principle, the presented
algorithms and data structures also work in higher dimensions. However, the number of
orthants grows exponentially with the number of dimensions, resulting in drawdowns
in performance. The lowest known bound of the number of neighbors required for weak
spanners in 3D is 8. However, this bound is not tight [13]. ONGs would benefit from a
scheme that requires less cones and still produces weak spanners.

Another direction of future work is the kinetization of ONGs. Kinetic data structures
store dynamic objects and explicitly model their motion [19]. The idea is to only change
the underlying structure if certain predicates change. This could save unnecessary up-
dates of ONGs for small motions which do not change the graph topology.

Finally, we want to apply ONGs to different problems in computer graphics. For
example, higher dimensional ONGs could be used for the broad phase of collision de-
tection.
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Abstract. This paper presents an integrated approach for interactive direct vol-
ume deformation and simultaneous visualization. The fundamental requirement
is that interactive performance without pre-processing must be achieved for large
volume data, where at any time up to one million elements participate in a defor-
mation that is applied interactively by picking and dragging in the 3D view. Cur-
rent physically-based approaches are still one or two orders of magnitude away
from this goal. In contrast, our approach extends the non-physical ChainMail
algorithm and combines it with on-the-fly resampling and GPU ray-casting. Spe-
cial transfer functions assign material properties depending on volume density.
The affected subvolume is deformed and resampled onto a rectilinear grid on the
CPU, and updates the volume on the GPU where it is rendered using ray-casting.
While the deformation is already being displayed, its quality is simultaneously
refined via an iterative relaxation procedure executed in a parallel thread.

Keywords: Deformation, Resampling, Volumerendering.

1 Introduction

This paper follows a vision first published in 1995: Thought as natural extension to
direct volume rendering, Sarah F. Gibson formulated the idea for a system that al-
lows direct deformation, cutting and carving of volume data [6]. She introduced the
so called ChainMail algorithm allowing in its extension modeling of deformation of in-
homogeneous materials. Similar to direct volume rendering, the deformation is directly
performed at the voxel level of the volume without any pre-processing.

The ChainMail algorithm provides only a non physics based deformation scheme,
but is able to deform large structures in real time: Having in mind that a small vol-
ume dataset of 2563 consists already of more than 16 million voxels, existing phys-
ically based approaches are still far away from being able to deform such structures
at interactive frame rates without previous simplification. Due to the limited available
computational power at the time of first publication of the algorithm and its extensions,
simultaneous volume rendering of the whole dataset during the deformation process
was not possible, and Sarah Gibson formulated this task as future work [8].

This paper presents a framework that integrates high quality real time visualization
with direct deformation of volume data fulfilling the following requirements:

– Full information of the original data is available throughout the whole process: De-
formation and visualization are directly performed at the voxel level of the volume.

J. Braz et al. (Eds.): VISIGRAPP 2007, CCIS 21, pp. 59–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



60 F. Schulze, K. Bühler, and M. Hadwiger

– The deformation is not physically correct, but plausible depending on the underly-
ing data.

– No time-consuming preprocessing is necessary, like segmentation, simplifications
and adaptive hierarchy generation.

– The system reaches interactive frame rates for simultaneous simulation and visual-
ization.

Basis of the proposed deformation system is the Enhanced ChainMail algorithm [16]
that is taken as initialization step for a relaxation solver that allows also simulation of
elastic deformation. Handling of the high amounts of data has been addressed by a
specialized data structure and memory management system. A new image order re-
sampling algorithm has been developed to provide simultaneous visualization of the
deformed data using the powerful GPU accelerated volume rendering framework de-
scribed in [17].

The paper is organized as follows: Related work is discussed in the next section. A
short summary of the Chain Mail algorithm and existing extensions is given in section
3. Section 4 outlines the general workflow of our system. The two-step deformation
method is explained in section 5 including details on the basic chain mail implementa-
tion, relaxation, and material definition. Visualization and related issues are addressed
in section 6, interaction methods are discussed in section 7. The paper closes with re-
sults in section 8, and a summary in section 9.

2 Related Work

Detailed discussion of the extensively available related work on physically based defor-
mation methods of (volumetric) objects is beyond the scope of this paper. The interested
reader is referred to two State of the Art Reports presented at Eurographics 2005 [14,3]
giving an excellent general overview.

Considering physically based approaches for direct deformation and visualization of
volume data, modern point based mesh free methods [12] seem to be the most natural
approach to deal directly with medical volume data: theoretically, no preprocessing
is required and deformation could be directly performed on the volume if each voxel
would be modeled as particle or phyxel.

The approaches mentioned above and reported in [14,3] provide physically correct
deformation, but due to their computational complexity, none of them is able to handle
more than 100k elements at interactive frame rates, even if GPU accelerated integration
schemes are used [9,11]. Simultaneous visualization of deformed objects is another bot-
tleneck, especially if surfaces have to be reconstructed on the fly, like it is the case in
general for particle-based and point-based approaches [1]. Nealen et al. [14] stated in
the conclusions of the state of the art report: ”Yet even with the current methodology,
the algorithms and models have seen somewhat limited application in production envi-
ronments and videos games. One reason for this is the lack of computational power...”.

Existing approaches addressing directly the deformation of volumes, i.e. without pre-
vious mesh extraction and/or simplification, are mainly based on space or ray deforma-
tion techniques: either a coarser structure (e.g. bounding boxes [18], volume or surface
geometry [23]) is deformed and the deformation of the volume itself is computed as
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displacement based on the deformation of the shape. This can be done either directly
or indirectly by deformation of the rays during rendering. But these approaches also
do not perform deformation at the the finest level. To capture fine structures, extensive
preprocessing (segmentation, geometric reconstruction) has to be done.

Spatial transferfunctions [4] allow geometric, procedural and hierarchical definition
of deformations performed on volumes: geometric deformation rules can be assigned
to each voxel by a previously defined function. Arbitrary interactive deformation is not
possible with this technique.

To our knowledge, the ChainMail algorithm [7] is the only existing algorithm able
to perform interactive deformation of common size volume datasets directly on voxel
level. The ChainMail algorithm itself is not a physically based deformation method
and is only able to simulate plastic deformation, but an additional relaxation step as
proposed in [8] can be used to get more realistic and elastic deformations. Furthermore,
the connected data structure allows easy manipulation of the volume like cutting and
carving. A generalization of ChainMail to arbitrary mesh topologies, the Generalized
ChainMail Algorithm, has been proposed by [10]. A complete system for planning of
arthroscopic knee surgery [5] and a biomechanical simulation of the vitreous humor in
the eye [16] based on the (enhanced) chain mail demonstrated the general applicability
of the method.

The next section give an overview of the basic functionality and limitations of exist-
ing ChainMail implementations.

3 ChainMail Revisited

Data Structures. The classical ChainMail algorithm is designed to operates on data
elements initially arranged in a three dimensional axis aligned grid defined by x-,y-,z-
axes. Each element is connected with its six direct neighbors by ChainMail constraints
that are defined as axis aligned regions describing the set of valid positions for each
neighbor element. Figure 1 shows the definition of a valid region for a neighbor in x-
direction described by its minimal and maximal distance in x-direction and the allowed
deviations (shear) in y- and, in the 3D case, also in z-direction. Valid regions for other
neighbors are defined in an analogous way. Material properties can be directly modeled
by modification of the ChainMail constraints. Extent and form of the valid region are
directly connected to stiffness/softness of the simulated material.

Fig. 1. Left: ChainMail constraints. Right: Constraint violation.
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Algorithm. If translation of an element causes constraint violations, i.e. one of the
neighbors is moved outside of its valid region, the ChainMail algorithm solves the con-
straints by sequentially moving the elements into the valid regions. Each moved element
can cause new constraint violations, hence the order of element processing is important.
The original algorithm provides uniform propagation of the deformation by processing
candidates of the six different major directions on a rotational basis.

ChainMail has the advantage that its complexity does not grow with the number of
elements of the object but only with the number of affected elements. The performance
of the algorithm is based on two features of the algorithm:

1. The deformation is calculated depending on simple constraints.
2. Each element of the dataset is processed at most once per deformation step.

Existing Extensions. The original ChainMail algorithm solves only geometrical con-
straints. To achieve an optimal energy configuration Gibson presented an additional
simple relaxation step in [7]. The algorithm iterates over each element and moves it
towards an equilibrium position which is placed in the center of its neighbors. A second
drawback of the original ChainMail algorithm is that it is not well suited to process
inhomogeneous data. To overcome this limitation the Enhanced ChainMail algorithm
[16] has been proposed. The equal deformation propagation into each direction is re-
placed by an importance driven approach where elements with a higher amount of con-
straint violation are processed first. This method leads to a shock wave like deformation
propagation that propagates faster through stiff material. The simple midpoint-based re-
laxation scheme proposed in connection with the original ChainMail does not allow the
definition of material parameters and is therefore not suitable for the enhanced Chain-
Mail. Up to now, no relaxation scheme addressing this problem in connection with the
Enhanced ChainMail algorithm has been proposed.

4 System Overview

An overview of our deformation system is depicted in figure 2. Initial deformation
input is provided by user interaction through a pick and drag interface (see section 7).
The user input is processed by an extended ChainMail solver (see section 5.1) which
computes a preliminary but fast deformation. The result can be visualized immediately
but it is also forwarded to the relaxation solver which is initialized with the deformed
voxels. Our relaxation method (section 5.2) optimizes the deformation for more realistic
material behavior, but since relaxation is a time consuming iterative process, this routine
is invoked in a second thread on the CPU and parallel to the rendering step performed
on the GPU. Rendering is done by GPU-based direct volume raycasting (section 6). To
do so, the deformed volume data needs to be resampled into a rectilinear grid and has to
be transferred into graphics card memory. Since resampling is a time consuming task as
well, and the amount of data that has to be downloaded to graphics memory should be
as small as possible, only the changed area of the volume will be considered. For this
reason both deformation methods provide bounding boxes which describe the affected
part of the volume.
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Fig. 2. Workflow

The deformation and rendering cycle performs as follows. At the begin of each loop
it is checked if the user is actively manipulating the volume. In this case ChainMail
deformation and visualization is performed sequentially. In the other case the relaxation
solver is invoked in parallel to the rendering routine.

5 Two-Step Deformation

The proposed deformation system allows processing of large volume data sets with in-
homogeneous materials. The system has been realized as two-step deformation system
providing in the first step a rough and fast ChainMail based deformation, followed in
a second step by a successive refinement based on a physically motivated relaxation
scheme.

5.1 Step 1: Enhanced ChainMail

The first step of our deformation system is based on the Enhanced ChainMail [16]
algorithm that allows handling of inhomogeneous data, i.e. the definition of different
deformation properties per material (see section 5.3).

The ChainMail deformation process performs in the same way as proposed in the
original literature, but extensions have been developed concerning data structure and
data handling.

Data Structure and Memory Management. Basically we use a similar data structure
as presented by Gibson et al. The original volume data (in most cases two bytes per
voxel) is wrapped with an explicit position, a unique id, neighborhood information, a
time stamp and flags. In our implementation we came up with a data structure using 64
bytes for one voxel.
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In contrast to the original implementations we consider much larger datasets (up
to 1GB), hence preparing the whole volume dataset for deformation can easily reach
the limit of available main memory. Therefore we extended the data structure with a
bricking scheme to reduce the allocation in main memory, similar to the method for
GPU based volume rendering provided by [24]. The volume is subdivided in small
bricks, 32×32×32 in size. These data blocks are generated only if they are needed for
the deformation process.

The data structure is controlled by a memory management algorithm. This algorithm
keeps track of the available and already allocated memory. Every time data for defor-
mation is missing the memory manager is invoked to generate the block which contains
the missing data.

If the system runs out of memory an unused data block is freed before generating the
new one. In this way the available memory does not limit the possible volume size but
the number of data blocks which can be deformed at one time.

5.2 Step 2: Relaxation

As described in section 3, ChainMail comes with the advantage of simplicity and speed
but generates only a very coarse approximation of soft body deformations. The relax-
ation step described in this section is suited to handle inhomogeneous data, and im-
proves the previous deformation result of the Enhanced ChainMail algorithm by adding
additional physical constraints.

Our goal was to implement a relaxation system providing physically plausible im-
provements of the initial ChainMail deformations while still performing at interactive
frame rates. For this purpose we prpose a relaxation scheme similar to the approach
presented in [2] that is directly derived from physically-based mass-spring methods.
Our system based on the following basic relaxation step:

Ft+∆t
i = D(pt

i) (1)

pt+∆t
i = pt

i + α · Ft+∆t
i (2)

A displacement function D is evaluated to calculate a vector Fi which moves the node
into the equilibrium position. Material properties are modeled with this displacement
function. Then the node position pi is updated with Fi scaled by a step size α < 1.
High values for α lead to faster convergence but can lead to instability as well.

Displacement Function D. The behavior of material is modeled using linear springs
to connect the elements. Linear springs are described by Hooke’s Law as

f t+∆t
i,j = −ki,j · (pt

i − pt
j) (3)

where i denotes the node and j the neighbor. The constant ki,j denotes the stiffness of
the spring between node i and j. Since the spring tries to preserve a defined distance
between the nodes, the rest length dij is introduced into the equation.
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Fig. 3. Spring placement, axis aligned (structural) springs left and diagonal springs right

f t+∆t
i,j = −ki,j · (di,j −

∣∣pt
i − pt

j

∣∣) · (pt
i − pt

j) (4)

The force vector of node i is calculated by summing all springs.

Ft+∆t
i = D(pt

i) =
∑

j∈σ(i)

f t+∆t
i,j (5)

The springs are spanned to the axis aligned neighbors to preserve the grid structure and
to the diagonally opposite elements (see fig. 3) which introduces shear resistance and
volume preservation behavior.

Node Processing. A generic relaxation algorithm iterates over all elements and solves
the local constraints. In the special case of a 3D grid deformation problem we can take
advantage of the fact that during one iteration an element can only influence its direct
neighbors.

The relaxation process performs on a list of elements which are affected by the defor-
mation. The list is initialized with all elements the previous ChainMail step has touched.
During relaxation elements can be deleted from the list if a certain convergence crite-
rion is fulfilled. In our implementation we use the length of the movement that has to
be below some threshold:

∣∣pt
i − pt−∆t

i

∣∣ < ε. If convergence for the given element is
not reached, all direct neighbors are added to the list. To avoid adding nodes more than
once, a special flag in the element data structure shows if the node is in the list or not.
A single linked list is used because this implementation has the smallest overhead for
inserting and deleting items.

The advantage of processing the nodes in a wave propagation order during relaxation
is discussed in [2]. Our implementation, uses this advantage without any overhead: The
relaxation algorithm is initialized with elements collected from the ChainMail routine.
Since ChainMail also works in a wave propagation order no additional sorting has to be
done.
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Fig. 4. Volume deformation with inhomogeneous material. The inner sphere remains undeformed
because of the very soft (invisible) padding to the outer sphere.

5.3 Material Definition

The material specifications with ChainMail and relaxer properties are managed in a
global list. The assignment is done through a lookup table which takes the voxel value
as key.

Using a lookup table has the advantage that material properties can be easily modi-
fied while the system is running.

Applying material specifications via voxel values has similarities to transfer func-
tions for volume rendering. In this case ranges of key values share one material. Inter-
polation of the parameters is not yet implemented but considered as future work.

The properties of each material have to be defined for the ChainMail solver and
for the relaxation solver. Both deformation settings should produce as similar results
as possible since the relaxer converges faster if ChainMail provides a good start con-
figuration. A simple mapping from ChainMail constraints to spring properties can be
designed by directly relating the size of a valid region with the stiffness of related
springs.

6 Visualization

As a result of deformation the volume data is organized in an unstructured grid. Differ-
ent methods for rendering scattered data have been developed which can be categorized
in direct and indirect methods. Direct rendering of a deformed volume dataset can be
done using the projected tetrahedra algorithm [19,22], the point-based approach called
splatting [21,13] or a texture-based approach presented in [15,23].

In contrast, indirect methods require a resampling step to transform the unstructured
data into a rectilinear volume representation which can be rendered using any direct
volume rendering technique.

In this work we have chosen the indirect method because GPU-accelerated direct vol-
ume rendering is outclassing other volume rendering methods in quality and
performance.
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6.1 Resampling

Weiler et al. presented in [20] an efficient object-order resampling approach. This
method is based on simple rasterization of a volume that is defined by tetrahedra. The
subdivision of the deformed grid in tetrahedra would result in five times more (and
smaller) tetrahedrons than voxels. This induces that iterating the destination voxels (in
image order) is more efficient than iterating over tetrahedra.

Therefore we developed a new image-order resampling algorithm. This makes it nec-
essary to solve the point location problem emphasized in [20] , i.e. to find the influenc-
ing elements in the deformed dataset corresponding to a discrete position in destination
the domain.

For each voxel in the destination volume two steps have to be performed. First, find
the (deformed) element that is placed next to the resampling position (the nearest neigh-
bor). Second, compute an interpolation for the resampling position.

Nearest Neighbor Search. The first step is solved by an incremental search algorithm
which traverses the deformed grid toward the resampling position. The algorithm starts
with an initial element and tries to find in each iteration step an element in the local
neighborhood that is placed nearer to the goal. For this algorithm it is important that the
grid remains in a status where this steepest descent-like optimization method does not
get stuck in a local minimum.

Local minima arise if the grid structure is internally overlapping as a result of defor-
mation. Theoretically, both deformation methods keep local neighborhood relationships
and prevent the grid from overlapping. Especially the ChainMail algorithm defines very
strict constraints which limit the relative position of the neighbor elements. Practically,
ChainMail is optimized for speed and not for accuracy and overlapping might occur
in some cases. Hence the deformation system can easily produce grid configurations
where the naive implementation fails to find better elements in the neighborhood. To
escape from this “local minima” we introduce two heuristics:

– Start the search algorithm with an estimated jump, i.e. performing a number of
traversing steps over the most promising neighbor links if the current node can not
be the nearest neighbor because of its distance to the goal.

– If no better element can be found, check if it is possible for the element to be the
nearest neighbor. If not, perform an estimated jump.

At the beginning of the resampling step an initial start point for the search is needed.
We are using simply the element which would be the nearest neighbor in the un-
deformed grid. The resampling algorithm is performed line wise, hence local coher-
ence can be exploited by using the last nearest neighbor as start point for the next
search.

The presented search algorithm finds the nearest neighbor in more than 99% of all
cases. Rarely, small resampling artifacts can be observed because of a failed search but
in exchange the search algorithm performs with a almost constant complexity if local
coherence is exploited.



68 F. Schulze, K. Bühler, and M. Hadwiger

Fig. 5. Comparison: First column nearest neighbor, second column barycentric interpolation, third
column radial basis functions with a radius of 1.4 and gaussian weight distribution. The first row
shows a 2D simplification of the used interpolation method.

Interpolation. Once the nearest neighbor is found the value for the resampled voxel is
computed. In addition to a method that directly uses the nearest neighbor value (near-
est neighbor resampling) two interpolation methods have been implemented. Figure 5
shows rendering results after deformation and resampling. In the second row the visible
material is expanded which means the space between the nodes is bigger as usual. In
the third row we see a compressed volume where the nodes stick more together.

Optimization. To save computation time only deformed parts of the volume are re-
sampled: While deforming the smallest bounding box enclosing all moved voxels is
tracked, and transferred to the GPU for visualization.

6.2 Rendering

The actual rendering is done through GPU accelerated direct volume ray casting (refer
to [17] for further details). The graphics card memory is initialized with the original
volume data. Both steps of the deformation (ChainMail and relaxation) send their re-
sults to the GPU and successively replace the original volume by the resampled parts
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of the deformed volume for visualization. The update is done after each iteration step.
In this way only small parts of the volume have to be replaced and the exchange of
the volume has no influence on the rendering speed which stays interactive during the
whole deformation process.

7 User Interaction

For user interaction a simple mouse pick and drag interface was implemented. Picking
is done through first hit raycasting. The mouse click position in window space is trans-
formed into a 3D ray. This ray is traced through the volume. If a voxel value is found
bigger than some given iso value, the algorithm stops and a hit point is found.

It has been shown to be quite difficult to find a proper iso value for picking if volume
rendering with complex transfer functions is used. Therefore a special rendering mode
which combines direct volume rendering with first hit raycasting [17] allows visualiza-
tion and adaptation of a chosen iso-surface on the fly For picking, the same iso value is
used and the hitpoint corresponds to the visual feedback.

8 Results

For timing tests an intel dual core machine with 2.4 GHz, 2 GB of RAM and a Nvidia
Quadro FX 3400 graphics adapter with 256 MB RAM was used. Table 1 shows the
overall performance of the system stated in framerates. The listed results prove that
the deformation system remains interactive even if very large datasets are used. The
results have been produced in normal use case situations with up to 1 million voxel per
deformation such as the examples shown in figure 6.

The execution speed has been measured for the sub-modules of the deformation
system as well. The ChainMail algorithm reaches an average performance of 2.34 ·
106 elements

second , the computation cost is growing linearly with the number of deformed
elements.

The performance of the resampling algorithm depends on the used interpolation
method. Nearest neighbor resampling reaches an average performance of

Table 1. Timing tests
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hydrogen 64×64×64 0.5 MB 31.1 fps 30 fps 15.50 fps
endoscopy 512×512×128 64 MB 11.3 fps 9.5 fps 7.3 fps

head 512×512×333 166.5 MB 15.3 fps 9.1 fps 6.90 fps
beetle 832×832×494 652.1 MB 4.23 fps 3.65 fps 3.45 fps
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Fig. 6. Deformation of the “head” dataset containing 87.3 million voxels. Local deformations
involving 2.5 million voxels (ear) and 0.7 million voxels (mouth).

4.41 · 106 voxel
second , barycentric coordinates interpolation 2.46 · 106 voxel

second and interpo-
lation using RBF 1.48 · 106 voxel

second .
The performance of the relaxation step is difficult to measure. The algorithm iterates

2.3 · 107 elements
second but each element has to be processed many times until convergence is

reached. The number of needed iterations depends on the size of the deformation and on
the material parameters. Tests have shown that a deformation with two million elements
involved is relaxed within 3 seconds, while the system remains fully interactive.

9 Summary and Discussion

We have presented a complete system for interactive deformation of inhomogeneous
volume data combined with high quality rendering. Unlike other deformation systems
we perform all computations directly at the voxel level without any simplification or
preprocessing. Our system has proven to be able to handle datasets with more than
650 MB ( 340 million voxels) while more than 1 million voxels can be interactively
deformed simultaneously.

Due to the high amounts of elements that have to be deformed, the Enhanced Chain-
Mail plus relaxation approach for the deformation system turned out as the only possible
solution. However, the choice was a trade off between accuracy and interactivity and is
not able to reach the physical exactness of finite element or mass-spring systems. The
integration of more exact deformation systems is considered as future work and will
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become more and more possible with increasing computational power, like the recently
introduced PPUs (Physics Processing Units).

The resampling based visualization system has proven to be well suited for the given
problem. The main advantage is the possibility to integrate the deformation system
seamlessly into the high quality direct volume rendering framework. However, the im-
plementation of direct approaches able to render unstructured data directly are also
considered as future work to overcome the resampling overhead.
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Abstract. This paper presents a method for physical simulation of deformable
closed surfaces over a network, which is suitable for realistic interactions between
users and objects in a Collaborative Virtual Environment (CVE). To demonstrate
a deformable object in a CVE, we employ a real-time physical simulation of
a uniform-tension-membrane, based on linear finite-element-discretization of the
surface. The proposed method introduces an architecture that distributes the com-
putational load of physical simulation between each participant. Our approach
requires a uniform-mesh representation of the simulated structure; therefore we
designed and implemented a re-meshing algorithm that converts irregularly tri-
angulated genus zero surfaces into a uniform triangular mesh with regular con-
nectivity. The strength of our approach comes from the subdivision methodology
that enables to use multi-resolution surfaces for graphical representation, physi-
cal simulation, and network transmission, without compromising simulation ac-
curacy and visual quality.

Keywords: Deformable objects, real-time simulation, cloth modelling,
Distributed and Network Virtual Environments, Collaborative Virtual
Environments.

1 Introduction

Collaborative Virtual Environments (CVE)s are being extensively used for training, de-
sign and gaming for several years. They enable participants to get immersed into a Vir-
tual Environment where they can perform a task or experience a story together. In most
use cases such as gaming and education, current CVEs are sufficient to address user
expectations related to visual realism, animations and networking. However, CVEs also
involve substantial amount of interaction between the users and the objects in synthetic
worlds, which should be visually appealing and physically realistic as well. Current
CVEs are mostly limited to avatar-avatar interaction or the object interactions are ani-
mated using offline techniques and they are commonly hard-coded into the application.
Another recent approach is to use rigid body simulations together with inverse kine-
matics engines [1]. Real-time physical simulation of deformable bodies in CVEs will
enable accurate replication of interaction with real world deformable objects and open
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a vast array of possible applications. One example is medical and engineering applica-
tions which require accurate simulations in real-time.

In this paper, we are presenting a method for deformations on closed surfaces over a
peer-to-peer network architecture (Fig. 1).

Fig. 1. First (a) and second (b) peers connected to the Virtual Environment, deforming a sample
deformable model. (c) Colors red and blue denote domains of different peers in a collaborative
deformation.

2 Related Work

2.1 Collaborative and Distributed Network Virtual Environments

DIVE [2] is one of the first Distributed Virtual Environments that allows participants to
collaborate in a 3D virtual world which facilitates audio, video and text transmission for
communication and interaction within the VE. Similarly, NPSNET [3] is designed for
military training and simulation for networked environments using Distributed Inter-
active Simulation Standard (DIS). MASSIVE is a VR conferencing system especially
used for public participation and performance [4]. VLNET allows multiple users repre-
sented by 3D virtual human actors to interact with each other and enables third parties
to view the shared virtual environment from the Web using VRML[5].

There are only a few systems that in particularly deal with the significance of physical
simulation in collaborative virtual environments. A recent work by Jorissen [1], gives a
detailed survey on state of the art of dynamic interactions and physical simulations in
CVEs. Jorissen et al. introduces a collaborative virtual environment, where the object-
object interaction is allowed in addition to avatar-object and avatar-avatar interactions
using a non-commercial physics engine.

There are few attempts to introduce deformable objects into CVEs: Dequidt et al. [6]
propose a system based on ghost objects to handle network latency. Ghost objects are
associated to objects manipulated over the network and introduced into the client side
to perform physical simulations asynchronously at each user.
Collaborative Haptics Environments are also introduced to handle surgical training and
simulations [7]. As haptic rendering must be performed at simulation rates higher than 1
KHz, most systems require dedicated hardware running on real-time operating systems
[8]. Goncharenko et al. [9] report a distributed and collaborative haptic visualization of
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a 1-DOF crank model only possible on Intranets. They used a dedicated haptic commu-
nication library to satisfy real-time communication requirements of haptic rendering on
a client-server architecture connected through Ethernet.

2.2 Deformable Objects

Visualization of object deformations is an important research area for over two decades
with a large span of applications such as cloth, tissue modeling and virtual surgery.
One set of approaches on the visualization of deformable models is non-physical and
purely geometric techniques, most of which is classified as Free-Form-Deformations
[10]. Physics based approaches gained a popular attention by enabling cloth anima-
tions [11]. Cloth animation is an extensive research area covering wide range of issues
from physical simulation to collusion detection [12]. Early examples of cloth anima-
tion using a linear model based on energy minimization, and continuing approaches
using explicit integration schemes, are suffering from stability issues for large body
deformations. Baraff and Witkin [13], introduced an implicit integration scheme for
stable simulations using large time steps. On the other hand, real-time simulation of
deformable models is an other challenge, and linear mass-spring models introduced at
first [14]. As an alternative, Boundary Element Method is introduced, which is inspired
by Finite Element Method (FEM), however, considers only the surface of the model
[15]. Non-linear FEMs are not suitable for real-time simulations since they are compu-
tationally intensive, so deformable object simulations in virtual environments continued
to use improved massspring models [16]. Also, precomputed models for real-time dy-
namic deformations are considered [17]. Since medical applications require real-time
and accurate simulations some approaches used FEM to parameterize the mass-spring
model to improve accuracy [18].

3 Network Deformable Objects

Our method applies a collaborative deformation on a linear membrane model over net-
work, which can be used for simulation of deformable objects (tissue, organ, cloth) in
CVEs.

3.1 Geometric Model

The proposed approach requires a uniform representation of the simulated structure.
Restriction on the genus of the model allows us to construct a regular 2D grid that
corresponds to the surface of the model.

The surface of any convex polyhedron is homeomorphic to a sphere and has Eu-
ler characteristic of two. Homeomorphic spaces are identical from the viewpoint of
the topology therefore genus zero surfaces preserve their topological properties under
spherical parameterization and can be mapped onto a convex regular polyhedron.

Mesh Representation. We have chosen Tetrahedron as the Domain for our mesh rep-
resentation, since it has four equilateral triangular faces that can be represented as a 2D
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Fig. 2. 2D Grid representation of a tetrahedron

grid having (2n + 1)x(2n+1 + 1) nodes where, n is positive integer determining the
number of vertices and will be referred as detail level (Fig. 2).

Mesh Generation. We propose an algorithm that converts irregularly triangulated
genus zero surfaces into a uniform mesh with regular connectivity. Previous approach
for constructing regular meshes with fixed and simple topology by Hoppe [19], gener-
ates a spherical parameterization of the surface and the domain. Surface, projected on
the sphere, mapped on to the domain, and unfolded to generate the geometry image.
We apply a similar procedure, but we introduce a different technique for spherical pa-
rameterization and model re-meshing. It allows adjusting the tradeoff between face area
uniformity of the generated mesh, and preserving the accuracy with the original mesh.

Given a triangle mesh M , the problem of spherical parameterization is to form a
continuous invertible map ψ : S → M from the unit sphere to the mesh [19].
Spherical parameterization of both a regular tetrahedral domain D and an irregular
input mesh M are necessary to generate Sphere to Mesh (S → M) and Sphere to
Domain (S → D) mappings that will allow us to perform Mesh to Sphere and Sphere
to Domain (M → S → D) transformation.

Any convex polyhedron can easily be projected onto a unit sphere (Fig. 3) by switch-
ing to spherical coordinate system (θ, φ, r) and setting a unit radius for all vertices
(Gnomonic Projection), however translation between each mesh triangle and spherical
triangle might introduce a certain amount of distortion.

Fig. 3. Gnomonic projection of a tetrahedron
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Previous approaches define a stretch norm to measure the stretch efficiency and con-
clude that minimizing the stretch norm is a non-linear optimization problem [19,20].
We attack this problem by a modification of a well known technique used for graph
drawing. Graph drawing using force directed placement methods, which are also called
springembedders, distributes vertices evenly in the frame and minimize edge crossings
while favoring uniformity of the edge lengths [21]. Since we implemented a deformable
physics engine that can handle mass spring systems efficiently, we introduce a variant
of spring-embedders for stretch optimization.

A spring-embedder model is generated from the gnomonic projection of the domain.
Every vertex has a constant mass, and springs are introduced between neighboring ver-
tices. An external force field (Eq. 1) is applied from the center of the domain that limits
displacements of vertices on the unit sphere.

fexternali = (1 − ||xi||) × x̂i ∀i , 0 ≤ i ≤ nNodes . (1)

Springs between the vertices tend to preserve initial edge lengths and resist move-
ments that change the topology; however we need to establish a tension on these springs
to perform stretch optimization.

We scale down the positions of the vertices that are projected onto unit sphere
(Eq. 2), and an external force which is applied continuously expands the vertices onto
the unit sphere again while producing a tension on the springs. Stiffness parameters
are updated continuously to achieve an area uniform tessellation over the unit sphere
(Fig. 4).

xinew = C × xi ∀i , 0 ≤ i ≤ nNodes , 0 ≤ C ≤ 1 . (2)

Fig. 4. (a) Gnomonic Projection of Tetrahedron. (b) Stretched Gnomonic Projection of Tetrahe-
dron.

Our proposed force model is a feasible stretch optimization technique for domain to
sphere mapping; however, it is insufficient for mesh to sphere mappings where the pro-
jection of nonconvex polyhedron into a unit sphere results in edge crossings and does
not preserve initial surface topology. We use a vertex displacement procedure (Eq. 3)
which is similar to the relaxation method of previous spherical parameterization ap-
proaches [22] to overcome this problem (Fig. 5).

xinew =
nNeighborsi∑

j=0

xij

nNeighborsi
, ∀i , 0 ≤ i ≤ nNodes , xij is jth neighbor of xi .

(3)
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Fig. 5. (a) Irregular Input Mesh. (b) Stretched Gnomonic Projection of Input Mesh.

Model Re-meshing. Combining the spherical mappings mesh to sphere (M → S)
and sphere to domain (S → D) to derive mesh to domain mapping (M → D),
requires intersection of the sets on the sphere. However, transformed vertex coordinates
of the mesh and domain might not intersect on the sphere, and vertices of the domain
might fall inside of a mesh facet. For each vertex of the domain, intersecting face of the
parameterized mesh should be found out and 3D coordinates of domain vertex should
be computed by interpolating the vertices of the intersecting face (Fig. 6).

Fig. 6. Intersecting Spherical Projections of Tetrahedral Domain and Input Mesh

Since computing the interpolated coordinates is costly, we introduce a fast method
taking advantage of recent advances in graphics hardware using the GPU and frame
buffer objects. Using OpenGL and programmable shaders (GLSL), we render the faces
of the parameterized mesh onto the frame buffer using the two dimensional spherical
coordinates (θ and φ) of the transformed vertices. Initial Cartesian coordinates (x, y,
and z) of the parameterized mesh vertices are attached to color attributes (r, g, and b)
at the vertex shader, and inside of each face is filled with the interpolated Cartesian
coordinates at the fragment level (Fig. 7). Rendered image is then fetched from the
frame buffer as a 2D texture and used like a lookup table to generate 3D coordinates of
the domain vertices(Fig. 8).

Subdivision Scheme using Convolution Kernels. Subdivision methodology is appro-
priate for our approach since it allows multi-resolution representation of a surface and
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Fig. 7. Spherical projection of input mesh is, (a) rendered as 3D wireframe, (b) 3D colored sur-
face, (c) 2D colored surface, and (d) 2D colored surface, where the original positions of vertices
are used as color components

Fig. 8. Final comparison of (a) the input mesh with 1444 vertices, and (b) the resulting regular
mesh with 8385 vertices

fast switching between detail levels. It also favors numerical stability, so it is highly suit-
able for physical simulation of deformations using finite element and finite difference
methods.

We used a variant of butterfly subdivision scheme [23] that generates a C1 smooth
triangular mesh. Modified Butterfly Scheme is an interpolating subdivision scheme,
where the original vertices (control points) are also the vertices of the refined surface
and surface is interpolating to a limit surface. This behavior makes it possible to use
surfaces with different resolutions for graphical representation, physical simulation, and
network transmission, without compromising the integrity of simulation accuracy and
the rendered image.

Given that we have a regular mesh representation as a grid structure, we introduce
some modifications (Fig. 9) to apply a fast and robust refinement strategy using modi-
fied butterfly scheme. Taking advantage of having a regular domain, we have no bound-
ary or crease vertices, but there are four extraordinary vertices of valances three on the
corners of the tetrahedral domain. However, if we duplicate the edges of these vertices,
they can be treated as regular vertices. Since the duplicate edges are symmetric to exist-
ing edges, resulting odd vertices will have same values. This modification allows us to
use the mask for interior odd vertices with regular neighbors for all the grid nodes. We
also introduce offsets to 2D grid representation. Offsets are the copies of grid nodes,
assuring existing neighboring properties and they are kept updated before the convo-
lution process. Having a 2D grid representation and a mask with constant coefficients,
odd vertices can be generated by consecutive convolutions with three kernels created
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Fig. 9. Modified 2D Grid Structure

Fig. 10. (a) Modified 2D Grid Structure. (b) Application of mask for interior odd vertices with
regular neighbors. (c) Equivalent convolution kernel. (d) Three convolution kernels generated for
three edges.

by rotating the subdivision mask three times (Fig. 10). Necessity for the grid offsets
arises from the application of the mask to the grid boundaries, and modified subdivi-
sion scheme requires first neighbors of even vertices that are next to generated vertex.
Offset width does not change according to the grid dimensions and time required for the
update of the offsets is negligible. After the convolution of the nth level subdivision sur-
face three times, resulting 2D grids are merged to generate (n + 1)th level subdivision
surface having (2n + 1) × (2n+1 + 1) nodes (Fig. 11).
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Fig. 11. Comparison of resulting mesh refined by subdivision and rendered at different level of
details: (a) 8335 vertices, (b) 33153 vertices, (c) 131841 vertices

3.2 Physical Model

Physical simulation of deformable objects is an extended research area, where several
methods are present, varying from fast and simple methods favoring speed and scala-
bility, to much more complex methods favoring accuracy and stability. Linear methods
such as mass-spring models for dynamic deformations are suitable for use in realtime
applications; however, they are not capable of handling large deformations and small
time steps which are required to guarantee stability [14,24]. On the other hand, non-
linear models incorporating large viscoelastic and plastic deformations are computa-
tionally intensive [25], and despite their physical accuracy, real-time simulation of large
deformations is only possible with massively parallel computers.

For the demonstration of the deformable object on a collaborative virtual environ-
ment, we use a real-time physical simulation of a uniform-tensionmembrane, based on
linear finite-elements. We introduced finite element discretization to form the global
stiffness matrix, which is updated frequently to handle large deformations with en-
hanced accuracy and we used Runge-Kutta-Fehlberg method for integration to achieve
bigger time steps and improved stability [26].

Linear Finite-Element Model. Application of the finite-element method for the wave
equation [27,25], describing the time-dependent small deformations of a uniform-
tension membrane results in a standard system of equations [28] (Eq. 4):

Mẍ = −Bẋ − Kx + fexternal . (4)

where, x is the normal deformation of each node, M is the diagonal mass matrix,
fexternal is the external force vector due to user interactions, B is the diagonal damp-
ing matrix, and K is the stiffness matrix. In our implementation, we separate normal
deformation and the velocity of each node to improve the stability of the Runge-Kutta
method used to solve the linear system. Namely, we have (Eq. 5),

ẋ = v , (5)

and the resulting equation of motion (Eq. 6):

Mv̇ = −Bv − Kx + fexternal . (6)

The finite element method works well with an arbitrary triangulation of a surface as
well as proposed regular grid structure. In our implementation we apply the damping
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matrix directly on the nodal velocities, so as to model a permeable membrane placed
in a liquid. In some standard formulations, the damping is applied to relative nodal
velocities. The two yields in similar solutions, however our implementation results in
simpler sparse structures and faster simulation times via improved stability of nodal
damping.

3.3 Network Model

There are several network topologies used for Distributed Virtual Environments. Our
approach is implemented with a peer-to-peer architecture which is operational on local
and wide area networks. User Datagram Protocol (UDP) is used for communication,
since speed and bandwidth requirements are essential for a real time simulation and
have a greater priority over packet integrity.

Peers can run on different computers on the network or can be started in the same
application as separate threads. We dont introduce any dedicated servers, and peer nodes
are functioning as both clients and servers. Every peer has a listening port and address
for incoming connection requests. The peer which started to run CVE is required to
act as a master for coordinating partitioning of the simulation. Partitioning occurs after
sending a request by a participant which selects a face on the mesh and identifies it as
the point of interest where the peer is going to introduce an external force. Participants
can enter the CVE also as a viewer, where they do not interact with the model, but can
observe the simulation.

3.4 Partitioning and Synchronization of Physical and Geometric Models
through the Network

In our approach, partitioning the deformable object and synchronizing among peers
is an important issue, since it enables collaboration in the virtual environments with
distributed computational load. For an efficient communication and separation, we in-
troduce a quad tree based data structure over 2D grid structure proposed on the previous
sections. Quad-tree structure (Fig. 12) is a natural formation for the tetrahedral domain,
and can be divided hierarchically. Tree nodes are transferred efficiently via network
since a tree node contains a range identifier which is actually the combination of upper
left and lower right node index numbers, and state information of corresponding region
as a 2D array. Minimum depth level for the tree can be adjusted to keep the packaged
tree node size smaller then the maximum packet size allowed by the network protocol.
Domain divisions are designed upon a quad tree based structure in the figure (Fig. 12).
While dividing the domain into sub-domains, equivalence of the number of shared grid
nodes is an important criterion. However, keeping the domain boundaries shorter for
an accurate synchronization of the physical simulation is essential, and keeping the
fragmentation minimal for efficient network transmission is also important.

At the beginning of the simulation, each client starts to simulate the whole domain in-
dependently. When a connection invoked, domain is partitioned according to the points
of interest where the forces are applied by the clients. Nodes at the domain boundaries
are treated as boundary conditions, and the dynamical simulation of the local domain
performed consequently at the each client.
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Fig. 12. Sample tree structure for tetrahedral domain having depth of two

4 Results

Our graphical sub-system can efficiently handle very large meshes, taking advantage of
regular-mesh and subdivision methodology as presented in the previous chapters (Fig.
13). Our system renders meshes using the Phong shading model at interactive frame
rates (25 fps) with resolution up to 100K polygons on an AMD Opteron 2.6 GHz PC
equipped with NVIDIA Quadro FX4500 GPU. We implemented Phong shading model
on the GPU. Vertex positions are uploaded to texture memory and vertex normals are
computed on the fly using texture lookups.

Fig. 13. (a) One peer and (b) two-peers collaborative network deformation of a sample model
having a regular mesh structure

The proposed network communication model can handle synchronous simulation
among two peers of a surface up to 10K vertices over the local area network. This level
has a bandwidth requirement of 20 M Bits per second without any compression.

We also tested the performance of the system by comparing computational load
and number of simulated nodes. Our deformation engine can handle multi-resolution
meshes up to 30K nodes, and maintains interactivity at less than utilization. Partitioning
the domain between clients reduces computational load by 45and increases the running
speed by a factor of 1.8, depending on the partitioning ratio.
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5 Conclusions

We have proposed a new technique for deformable body simulations in the field of col-
laborative virtual environments and introduced several improvements over the methods
we adopted. We found that adaptive refinement and multilevel meshing strategies are
promising research domains that can be further exploited for increased network effi-
ciency and better physical accuracy for CVEs.

Furthermore, we showed that the partitioning of physical simulation domain has a
considerable effect on performance, and makes real-time simulation possible in scenar-
ios where only one peer is incapable of handling the computational load.

As future work, we consider on the fly compression which might significantly re-
duce the bandwidth requirement but can degrade overall performance because of the
additional computational cost. Optimization of the system for the Internet is out of the
scope of this paper, but it is safe to predict that the network lag on public networks will
have an impact on performance. Our method needs to be optimized for the Internet, and
tested over large physical distances to overcome possible negative network effects.
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Abstract. Meshless deformation based on shape matching is a new technique
for simulating deformable objects without requiring mesh connectivity informa-
tion. The approach focuses on speed, ease of use and stability at the expense
of physical accuracy. In this paper we introduce improvements to the technique
that increase physical realism and make it more suitable for use in interactive
real-time environments such as games and virtual surgery applications. We also
present intuitive real-time interaction techniques for picking, pushing and cutting
objects simulated using meshless deformation based on shape matching. For de-
formable collision detection and response, we present a new method for surface
meshes based on previous volumetric methods.

Keywords: Deformable models, real-time simulation, interaction techniques,
shape matching, virtual environments.

1 Introduction

Advances in graphics hardware and rendering techniques have made real-time interac-
tive virtual environments increasingly realistic. In the past few years such applications
and in particular computer games have started to incorporate rigid-body physics, which
are easily controlled and readily simulated using efficient libraries like ODE [12]. As
processing power increases further and physics cards are introduced, the natural pro-
gression is to include real-time deformable object simulation into virtual environments.

Existing solutions can be divided into pre-animations, kinematic methods, geomet-
ric methods, and physically-based methods. Pre-animated simulations are achieved by
modelling a limited range of interactions using a human animator, motion capture, or
more complex physically-based techniques. The simulations are stored in movie or 3D
animation formats and are triggered when the user performs certain predefined opera-
tions such as cutting in a specified region. This type of simulation does not allow arbi-
trary interactions, but is fast and can be achieved using game engines, flash animations
and other widely available tools.

Kinematic methods do not represent material properties and forces and include di-
rect mesh manipulation and implicit surfaces. Free-form deformation associates object
coordinates with locations in a surrounding mesh of control points [11]. If the control
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mesh is deformed the object deforms with it. The technique is quite simple, but offers
limited forms of manipulations, and makes it difficult to implement cutting operations.

We use the term geometric methods for techniques which use physical properties to
kinematically deform regions of an object’s geometry. Delp et al. [4] represent different
types of tissue using polygonal surface meshes. When interacting with the tissue, the
nearest contact point to the surgical instrument is calculated. Affected vertices in a pre-
defined area around this contact point are deformed using a polynomial interpolation.

Physically-based methods include mass-spring systems and finite element meth-
ods. Mass-spring systems represent soft objects as a set of points where neighbour-
ing points are connected by springs which simulate the elasticity of the material. The
method is easy to implement and cutting can be modeled by removing springs [8]. Fi-
nite element simulations model the volumetric nature of soft objects and describe its
deformation behaviour using a set of differential equations incorporating material pa-
rameters [2]. The resulting simulations are physically realistic but are computationally
expensive.

While the above presented methods have been continuously improved in recent
years, they are still either computationally expensive or only offer a limited number of
interactions and are difficult to implement and integrate into commonly available graph-
ics engines. ”Meshless deformation based on shape matching”’, or meshless deforma-
tion for short, is a new technique for simulating deformable objects [9]. The technique
is fast, easy to use, unconditionally stable, and has low memory requirements. These
factors make the technique particularly interesting for virtual surgery applications and
highly interactive real-time environments like computer games.

In this paper we present improvements to this technique. Section 2 introduces the
meshless deformation technique in more detail, while section 3 details our improve-
ments to the technique. Section 4 describes the interaction techniques available in the
application we have developed, and section 5 describes the collision detection and re-
sponse methods we implemented. Finally, section 6 summarises our results, and sec-
tion 7 concludes.

2 Meshless Deformation

In meshless deformation, each object is represented by a set of points, or point cloud.
No connectivity information is required. Each point in the point cloud moves and re-
sponds to forces independently of other points, while meshless deformation ensures the
object retains its overall shape. Let the initial configuration (i.e. positions) of points be
x0

i , and the deformed configuration of points at some later time be xi. To preserve the
object’s shape, meshless deformation moves and rotates the initial shape x0

i as closely
as possible onto the actual shape xi (see figure 1). The translated and rotated initial
shape now defines the set of goal positions gi. Every timestep, each point is moved a
fraction α of the way towards its goal position. This gives the point cloud a tendency to
preserve its initial shape.

The optimal transformation from x0
i to gi minimises the sum of the squared distances

between gi and xi. The problem is the same as that of “absolute orientation”: given
coordinates of a set of points as measured in two different Cartesian coordinate systems,
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Fig. 1. First, the original shape x0
i is matched to the deformed shape xi. Then, the deformed points

xi are pulled towards the matched shape gi (adapted from [9]).

find the optimal transformation between them [7]. This corresponds to minimizing the
following sum.

∑
i

wi
(
R(x0

i − t0)+ t − xi
)2

where R is a pure rotation matrix. In meshless deformation, the weights are the point
masses, t0 is the centre of mass of the initial shape, and t is the centre of mass of the
current shape. This equation can be extended to allow linear and quadratic matching
by replacing R with a linear deformation matrix A or quadratic deformation matrix Ã.
Linear deformations allow stretch and shear, while quadratic deformations addition-
ally allow bends and twists. A tendency towards the undeformed state is introduced by
combining A or Ã with R, resulting in a final deformation matrix F.

F = βÃ+(1 − β)R (1)

where β is a user defined constant between 0 and 1. When β is low, the tendency is
largely towards a rigid undeformed state; when β is high, the tendency is more towards
the quadratic match, resulting in a softer more deformable object.

2.1 Clusters

Because meshless deformation matches a quadratically deformed version of the initial
object, deformation is limited to combinations of stretch, shear, bend and twist over
the entire object. This means local deformations – those deforming only one part of
an object – are impossible. Higher order deformations, e.g. the cubic deformation of a
string given two bends, are also impossible.

As a partial solution to these limitations, Müller et al. divide the set of particles into
overlapping clusters with separate deformation matrices. This can greatly increase the
range of deformation. However, applications are largely limited to objects with mostly
independent subparts that deform only quadratically.

3 Improvements

3.1 Surface Area Preservation

Meshless deformation matches a goal configuration to the deformed point cloud as
closely as possible. However, the goal configuration frequently has a different volume
than the original object, which is generally undesirable. To preserve volume, meshless
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Fig. 2. A ball smashed with high force against a wall. The original meshless deformation al-
gorithm (top) is unconditionally stable but leads to unrealistic intermediate configurations. Our
modification (bottom) limits the scale and shear factors and results in more realistic looking re-
sults.

deformation scales the deformation matrix such that the goal configuration’s volume
is identical to the original object’s volume. The problem with such ”blind” scaling is
that when for example a force squashes the object along one dimension, the other two
dimensions are scaled up drastically in response as illustrated in the top row of figure 2.

Suggested Solutions. If an airtight balloon filled with water were thrown gently at
a wall, the volume of water inside would remain constant. But the balloon would not
behave as in the top row of figure 2, because of resistance to surface area stretch.
Clearly then, a method to constrain surface area is needed. Some algorithms use mesh-
based explicit surface area preserving forces [14]. For meshless deformation, possible
solutions include the following:

1. Limit forces applied to objects. If the vertices are not subject to large forces, they
will not move so far out of their original configuration that blind volume-
preservation scaling will produce such extreme surface area changes.

2. Limit the maximum velocities of vertices. As with 1, this will make the occurrence
of extreme configurations much less likely.

3. Limit α and β. If α is large, the vertices will return quickly to their goal positions,
lessening the likelihood of extreme configurations being produced. If β is small, the
tendency of the cube to return to an undeformed state will override the quadratic
transformation if it matches an extreme configuration.

4. Have vertices propagate a constraint force through to adjacent vertices.
5. Limit the transformation matrix so that it doesn’t match extreme configurations.

1, 2, and 3 used in various combinations are quite successful in combating this problem.
4 is an interesting option, but would require connectivity information to be implemented
efficiently. These methods also require tightly regulated parameters, so by definition
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cannot be unconditionally stable. 5 on the other hand is simple to implement, efficient,
and can achieve unconditional stability.

The simplest way to constrain surface area using 5 is to cap the Frobenius norm of
the linear deformation matrix A.

‖A‖2
F =

m

∑
i=1

n

∑
j=1

|ai j|2

Drastic increases in surface area are caused by large stretch or shear values, which are
the contributors to ‖A‖2

F . Therefore, by limiting ‖A‖2
F , we limit stretch and shear. If

we want to cap the amount of quadratic deformation for visual reasons, the following
methods can also be trivially extended from A to Ã. In the subsequent computations,
we use the term ‖A‖ as shorthand for the Frobenius norm.

Methods of Clamping. There are several ways to clamp ‖A‖; here are three.

1. Let rows of A be termed ri. If any ‖ri‖2 exceeds a user selected cmax, scale ri by x
such that ‖xri‖2 = cmax.

2. Cap the magnitude of A at cmax. To do this, if ‖A‖2 > cmax update A as

A ← γA+(1 − γ)R

where R is the rotation matrix from equation 1 and γ is derived from the solution to
the quadratic equation

‖γA+(1 − γ)R‖2 = cmax.

Note that because of the choice of cmax the function is monotonically increasing
when 0 ≤ γ ≤ 1 and hence the quadratic equation has exactly one solution. The
final matrix F in equation 1 is then calculated as:

F = (γA+(1 − γ)R)β + R(1 − β)
= γβA+ βR− γβR+ R−βR

= γβA+(1 − γβ)R.

hence γ is a simple beta modifier, i.e., it makes the deformation more rigid.
3. As a cheaper imitation of 2, simply set

γ =
cmax

‖A‖2 .

The first method works well, but restricts deformation along each axis regardless of de-
formation in the other axes. The second and third methods on the other hand restrict the
sum of deformations along all axes, so maximum deformation along one axis prevents
further deformation along the other axes. The appropriate method would seem to de-
pend on the physical properties of the object. Visually we could not distinguish between
methods 2 and 3.
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Further Extensions. These three methods solve the blow-up problem well, but intro-
duce a slight problem with visual plausibility. A soft object falling to the ground will
flatten to the point where the deformation magnitude φ is capped, then deformation
will jerk to a stop. To solve this we suggest a ”soft” cap in the form of a monotoni-
cally increasing function f such that for an intermediate threshold c and a maximum
threshold m,

f (φ) =
{

φ φ ≤ c
< m φ > c

In other words, the more the deformation magnitude φ exceeds the soft cap c, the more it
will be reduced such that it never exceeds the hard cap m. Here is an example function:

f (φ) =

{
φ φ ≤ c

m−
(

c
φ

)
(m− c) φ > c.

3.2 Inversion

Recall that the central equation to be minimised in meshless deformation is

∑
i

wi
(
R(x0

i − t0)+ t − xi
)2

Müller et al. present the most referenced solution to this problem (referred to as that
of absolute orientation) derived by Horn [7]. In this paper, however, Horn mentions
that the R obtained may be a reflection, rather than a rotation, in cases where reflection
provides a better fit.

In traditional photogrammetric applications of the absolute orientation problem, the
data may seldom be corrupted enough to produce a reflective R. When applied to phys-
ical objects undergoing large deformations, however, our experiments showed that the
vertices frequently are deformed enough that the optimal R is a reflection. The inverted
object produced is an unacceptable result for homogeneous objects, because it would
require massive self-penetration.

Determinant Cube Root Solution. Müller et al. do not specifically mention what to
do when a reflective R is produced. The only related comment is made when discussing
volume preservation of the linear transformation matrix A:

To make sure that volume is conserved, we divide A by 3
√

det(A) ensuring that
det(A) = 1.

When det(A) is negative, 3
√

det(A) is also negative. The subsequent division results
in an A that produces a non-inverted, volume preserving goal position configuration.
This configuration is obtained however by a simple reflection of each optimal position
through the origin. A no longer describes a minimization of goal position with respect
to vertex position. Thus the goal positions will tend to be far away from their respective
vertex positions, and the integration step will produce large velocities. The result is a
blowup.
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When taken literally, the method deals with an inverted goal match by producing a
blowup. If 3

√
det(A) is constrained to its absolute value, the method results in a stable,

inverted object configuration. Neither result is acceptable.

Modified R Extraction Solution. Rather than make a modification to the transforma-
tion matrix after R has been calculated, a modified algorithm is proposed by Umeyama
[16] that strictly produces an optimal rotation matrix R. Implementing this modification
involves only a simple addition to the singular value decomposition solution method of
Arun et al. [1].

This method solves the inversion problem, but only partially. While R will always
be a rotation, A may still contain a reflection (assuming the absolute value of 3

√
det(A)

is used). The final transformation matrix F = βA + (1 − β)R then will always have a
tendency towards a non-inverted configuration. But with β close to 1, the tendency will
be slow, and may produce physically implausible results. Ideally A would calculated in
a manner that never produced reflections–this remains for future work.

4 Interaction Techniques

In order to make a virtual world more realistic it is necessary to enable the user to inter-
act with objects in a believable manner. Simulating both the look and feel of materials
increases realism and the immersive experience. Furthermore advanced interactions are
required for many applications such as virtual surgery simulations. In this section we
introduce techniques for picking, constraining, pushing and cutting objects simulated
using meshless deformation based on shape matching.

The picking mode allows the user to grab and manipulate any object vertex with a
spring force. The spring force acts towards the cursor position (represented by a red
sphere), and can also be moved back and forth along the camera’s look direction using
the mouse wheel. Spring forces can be locked in place, allowing the user to change
modes or create new spring forces. In this manner objects can be moved around, bend,
and ”fixed” in deformed positions (see figure 3). This mode is useful for precisely ma-
nipulating an object’s position, deformation and orientation.

The pushing mode allows the user to manipulate objects with a pushing force. The
cursor position is represented in 3D space as in the picking mode, and collision response
forces are applied to any objects near the cursor. This mode is useful for moving several
objects at once, as when clearing a path or area.

4.1 Cutting

The main function of the cutting mode is to cut objects into separate pieces. The cursor
turns into two cylinders designed to mimic a cutting instrument, e.g. a pair of scissors.
To cut an object, the user moves the “scissors” to the appropriate position relative to
the object, then holds down the left mouse button to begin the cutting process. The two
“blades” of the scissors move closer together, and when they meet, every object the
scissors intersect is severed along the plane of the scissors, creating two new separate
objects.
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Fig. 3. A deformed model of a trout fixed using two locked pick points (left) and a torus model
violently moved around using the picking mode (right)

To change the orientation of the scissors, the user can move the scissors towards and
away from the view point using the mouse wheel. The scissors can be rotated about the
y-axis by holding down shift and pressing the left mouse button.

Our implementation splits an object in two along a plane by using two clipping oper-
ations and removing parts outside the clipping plane. If the clipped triangle is a quadri-
lateral it is divided into two triangles. Note that the cutting plane is derived from the
orientation of the cutting tool used in the application. Hence we do not have to deal with
partial cuts and the internal surface revealed by the cuts is always planar.

The next step is to seal the exposed cross-sections of the divided object. New sur-
faces are created by applying a Delaunay triangulation to the newly created vertices
touching the cutting plane (see figure 4). The triangles tend to be irregularly shaped
because only vertices around the edge of the surface are fed into the algorithm. With
no vertices in the centre, each triangle needs to span edge to edge. An improvement
to our method would add new vertices inside the edges before running the Delaunay
triangulation algorithm, resulting in more consistently sized and shaped triangles. Af-
ter the triangulation is performed, the object is tetrahedralised and divided into clusters
again.

5 Collision

Several types of methods are available for detecting and responding to collisions be-
tween deformable objects. These include bounded volume hierarchies, stochastic meth-
ods, distance fields, spatial subdivision, and image-space techniques [15].

The collision detection and response techniques used by Müller et al. [9] involve
spatial hashing [13] and penetration depth estimation [5] on tetrahedral meshes:

1. Using spatial hashing classify all points intersecting a tetrahedron as colliding.
2. Colliding points connected by an edge to a non-colliding point are border points.
3. For each border point a penetration depth and direction is calculated based on con-

nected edges’ intersection points and corresponding surface normals.
4. Penetration depths and directions are propagated inwards to the remaining colliding

points in a breadth-first manner.
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Fig. 4. After a cut, the exposed internal hole is
sealed up with a delaunay triangulation

Fig. 5. Response forces: ideal (a) and using
a penetration depth estimate

One major disadvantage of this method is that it requires a tetrahedral mesh. Many
applications, for example games, use only surface meshes. With this in mind we adapted
the method for use with surface meshes.

In steps 1 and 2, we need to classify colliding and border points without tetrahedrons.
Using spatial hashing, we test each edge for intersection with nearby surface mesh
triangles. On intersection, we classify the edge point in the triangle’s positive halfspace
as non-colliding, and the edge point in the triangle’s negative halfspace as colliding.
We also record the length along the edge of the intersection point. If the same edge
intersects multiple triangles, the two edge points’ classifications are with respect to
their closest triangle along the edge. The colliding points so classified are the border
points. Remaining points are classified as colliding if they can be reached from a border
point without passing through a non-colliding point.

Step 3 remains the same. Step 4 requires significant modification however – figure 5b
shows the penetration depths and directions calculated without modification. The prob-
lem here is that without a tetrahedral mesh, border points only exist on the surface of
the mesh around the intersecting triangles, and not inside the mesh around deeply pen-
etrated areas. This results in unrealistic propagated penetration directions. Rather than
use propagation, for each non-border colliding point we simply calculate the penetra-
tion direction as a weighted sum of each border point’s penetration direction, where
the weights are inversely proportional to the number of edges in the shortest edge path
between the colliding point and border point. To calculate penetration depth, we find
the length of a ray cast from the colliding point to the surface along the penetration
direction. The results are as in figure 5a.

Compared to the original tetrahedral method, our surface mesh collision technique
is slower and subject to classification errors and erratic behaviour. While the method
works for simple applications further research is necessary to make it more stable and
hence suitable for computer games and similar applications where tetrahedral meshes
are not available.
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6 Results

We have developed a framework for testing interactive simulation environments and
implemented within it meshless deformation based on shape matching together with
our improvements. The user may pick, push or cut deformable objects in real-time.

6.1 Simulation Capabilities

In order to determine the suitability of meshless deformation for interactive simulations
we tested it on a variety of objects using different deformations:

Simulation of Jelly-like Cubes and Spheres. The four basic modes of deformation
possible are stretch, shear, bend and twist. We tested the real-time rigid, linear, and
quadratic deformation of a deformable cube and sphere subjected to user interaction.
Visual plausibility was good; the objects behaved as one would expect.

Simulation of a Soft L-shaped Bar. This test investigates the deformation behaviour
for large displacements applied to highly concave objects. We would expect to be able
to bend both sections of the bar together or apart, but using only one cluster this is not
possible as illustrated in figure 6 (a)-(b). In particular even with quadratic behaviour the
bar twists and bounces strangely (c). A significant improvement is achieved by using
one cluster for each branch of the L-bar. Results are plausible (see figure 7), however
where clusters meet at the corner of the bar, deformation is uneven when the bar is
pulled straight (c).

Simulation of Complex Objects. We tested a variety of complex objects and found
that objects with limited bending modes, such as a trout, are simulated well (left image
of figure 3). It seems that the quadratic deformation modes of the trout model (which
is a surface model) correspond well with the type and magnitude of deformations of
a real trout which are restricted by its rigid skeletal structure. Surprisingly also some
very complicated objects such as an intertwined rubber torus look realistic (right image
of figure 3). The main reason for this seems to be that users are not familiar with its
behaviour. An informal user survey with students revealed that there was no consensus
how the object should behave when deformed. In contrast we are intimately familiar
with the deformations of a human face and any deviation from physical accuracy can
be easily noticed. We also found that to achieve an acceptable range of deformations
corresponding to the muscle groups of the face, clusters needed to be divided very pre-
cisely - we had to implement a special export tool to allow precise cluster specification
in a 3D modeling program. Even then, we found clusters very difficult to manipulate
into giving plausible facial animations, and boundaries between clusters were often no-
ticeable.

Simulation of Soft Tissue. For the final test we tested the suitability of meshless defor-
mation for virtual surgery simulations [6]. Good results were obtained when applying
large deformations to blobby objects such as kidney shaped models and convoluted tube
like structures. A trained user could easily notice that the deformations were physically
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not realistic, however, when using clusters they were physically plausible and sufficient
for simulating process related surgical tasks.

Modelling local deformations, e.g., for a section of skin, is difficult. Figure 8 (a)
shows that for a skin patch consisting of one cluster (α = 1.0, β = 0.6), picking simply
attempts to move and deform the entire skin patch. When the skin patch is divided into
2 × 2 clusters deformation is more plausible but still limited, with the dividing lines
between clusters quite visible in figure 8 (b)-(d). Using 5 × 5 clusters significantly in-
creases visual plausibility to a satisfactory level (figure 9). Using such a large number of
clusters is, however, quite inefficient and less accurate than using a mass-spring system
with a similar resolution.

Fig. 6. L-bar without clusters be-
ing pulled apart

Fig. 7. The same operation for an L-bar modelled with two
clusters

Fig. 8. (a) pick on a single cluster skin patch,
(b)-(d) picks on a 2×2 cluster skin patch

Fig. 9. Behaviour of a 5 × 5 cluster skin patch
in response to a user pick

In summary we found that simple objects with limited modes of deformation are
simulated best, while objects composed of simple subcomponents are simulated well
with clusters. Objects with a very high number of deformation modes, such as cloth,
can not be simulated efficiently [10]. However, the method seems to work well for
complicated objects which have simple deformation modes (e.g., a trout) or with where
the user is unfamiliar with its behaviour (e.g., an intertwined rubber torus).
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Local deformations can not be modelled efficiently and are best approximated by
clusters. An alternative solution are hybrid models combining meshless deformation
and, for example, a mesh spring model. Such multi-resolution representation where
non-linear responses are only considered in the immediate vicinity of the applied force
in order to obtain real-time non-linear deformations exist already, however, they re-
quire model representation which are not suitable for game engines and other common
graphics engines for virtual environments [3].

6.2 Suitability for Real-Time Collaborative Interactive Environments

We identified a range of criteria which a soft object simulation technique for real-time
interactive collaborative environments, such as computer games or Virtual Worlds, must
fulfill.

Usability. Informal user testing indicates that our environment and all our interac-
tion techniques were intuitive and easy to use. The ability to push, pull, fix and cut
deformable colliding objects significantly increased user enjoyment. In particular the
cutting tool proofed surprisingly popular in our informal user testing (figure 10).

Stability. Due to the improvements implemented, extreme forces and deformations
no longer produce stable inversions or erratic behaviour due to temporary inversions.
Furthermore, large forces no longer result in surface area blowups, allowing the use
of arbitrary stiffness (α and β) values, forces and speeds. Objects that are particularly
soft or moving at great speeds no longer jerk to a sudden stop when their deformations
exceed a certain amount, instead gradually reaching a maximum deformation between
soft and hard caps.

Ease of implementation. We found meshless deformation relatively easy to imple-
ment and integrate into the 3D rendering engine Ogre. There are only two main dif-
ferences between current 3D engines and what is required for deformable object sim-
ulation. Firstly, rigid objects have static sharable meshes, while deformable objects re-
quire updates to individual vertex positions every timestep on their own mesh instance.
Secondly, collision detection and response is a much slower, more difficult task for
deformable objects.

Performance. Our environment is comparatively fast: We can simulate dozens of
simple 32 tetrahedron objects with collisions in real-time and unconditional stability
(see figure 11). Higher speeds, e.g., for simple virtual surgery applications, could be
achieved by optimising our algorithms and/or implementing them on the GPU.

Tweakability. The ”gooeyness” and stiffness of each object can be easily modified us-
ing the α and β parameters. Further collision-response parameters can also be tweaked.
The strength of surface area preservation can be specified with a force response curve.
Volume preservation is automatic, but can be adapted to use a force response curve as
well.

Disadvantages. The primary disadvantage of our environment is the lack of robust
local deformation. For complex applications which require plausible localised defor-
mation of an arbitrary region, e.g., motor skill training of surgeons, our environment
is less suitable. Also, even when the simulation is visually plausible, it is usually not
physically accurate.
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Fig. 10. Cutting an object: (a) during cut, (b) im-
mediately after cut, (c) two resulting halves have
rolled apart, (d) after further cuts

Fig. 11. Large scale simulation of de-
formable objects

7 Conclusions

We have implemented an improved algorithm for meshless deformation based on shape
matching. Our improvements include soft capped surface area preservation, and the
prevention of inverted states. We have also implemented several techniques enabling
users to interact with deformable objects realistically and intuitively. Collision detection
and response have been implemented based on spatial hashing and accurate penetration
depth estimation techniques. We have also adapted the collision method for use with
triangular surface meshes, for applications such as games where tetrahedral meshes are
not available. Informal user testing indicates that users find our environment significantly
more enjoyable and immersive than a comparable rigid body physics environment.

Disadvantages include that simulating local deformations requires division of the
object into fine grained clusters, which can be inefficient. Precise cluster divisions can
also be difficult to specify. For large scale objects and scenes, efficiency improvements
are necessary. Finally, the cut operation does not support partial cuts or incisions, which
would be useful for virtual surgery applications or games.

In summary, we believe that the techniques implemented have promising potential
as applied to a virtual surgery simulator, games, or any other environment where speed
and immersive interactions are required but physical accuracy is not.

8 Future Work

One major problem limiting meshless deformation’s use in some applications is the lack
of robust local deformation. One avenue of investigation might be to integrate a mass-
spring system, which is usually disabled, but where user picks activate mass-spring
behaviour in the pick’s local region. Mass-spring areas around a partial cut or incision
could similarly be activated. For larger cuts, but not complete severances, a method
of dynamically partitioning new clusters may be possible that would allow ”flapping”
behaviour, similar to a tennis ball nearly cut in half with both halves ”talking” like a
mouth.
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Abstract. Image stitching is an image processing method, where multiple pho-
tographs covering different parts of the same scene, are combined to form a sin-
gle wide-angle image. Stitching is a very challenging task, and during the past
decades many algorithms have been developed for it. Unfortunately, there has
been no objective way to measure the quality of stitching results. To mend this
shortcoming, we propose a novel method for testing stitching algorithms. The
testing process starts from an arbitrary reference image that is used to create syn-
thetic input data for the stitching algorithm that is to be tested. To make the testing
realistic, various camera-related distortions along with perspective warps are ap-
plied to the input images. From this input data, the stitching algorithm creates a
wide-angle image that is then compared to the reference image, from which the
process started.

Keywords: Stitching, mosaics, panoramas, image quality.

1 Introduction

Image stitching is a method for combining several images into one wide-angled mosaic
image. Computer-based stitching algorithms and panorama applications have been used
widely for more than ten years [1], [2]. Although it is evident that technical improve-
ments have taken place in computer-based image stitching, there has been no objective
measure for proving this trend. Subjectively, it is relatively easy to say whether a mosaic
image has flaws or not [3], but analyzing the situation computationally is not straight-
forward at all.

If we assume that we have a mosaic image and wish to evaluate it objectively, the
first arising problem is usually the lack of a reference image. And even if we had a
reference image of the same scene, we would generally notice that it did not have ex-
actly the same projection as the mosaic image, therefore making pixel-wise comparison
impossible. Also, it may happen that between taking the hypothetical reference image
and the narrow-angled mosaic image parts, the scene might have changed somewhat,
making the comparison unfit.

In this work, a method is described to overcome these problems, but before going
deeper into the topic, some terms need to be agreed upon. From here on, the narrow-
angle images that are consumed by a stitching algorithm are called source images. Also,
we will call the group of source images a sequence, even if the source images are stored
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Table 1. Common flaws in image mosaics

Type of Error Cause
Discontinuity Failed or inadequate source image registration

Blur Shooting conditions, unfit blending, lens distortions
Object Clipping Moving object in source image ignored
Intensity Change Color balancing between mosaic parts

Fig. 1. Mosaic flaws. From left to right: intensity change, discontinuity, object clipping.

as separate image files. It is worth mentioning that the source images are given to the
stitching algorithm in the same order as they have been created.

To be able to create a method of evaluating mosaics, we have to know what kinds
of errors exist in mosaic images. Flaws that we will call discontinuities are caused by
unsuccessful registration of source images. Apart from completely failed registration,
the usual cause of these kinds of errors is the use of an inadequate registration method.
For example, if the registration method of a stitching algorithm is unable to correct
perspective changes of the source images to the mosaic, the mosaic will have noticeable
boundaries.

Blur is a common flaw in most imaging occasions and may be caused by the imag-
ing device or by extrinsic causes, e.g. camera motion. In mosaicking, blur can also be
caused by inadequate source image blending [4].

Object clipping happens when the location of an object changes in the view of the
camera between the source image captures. In a practical image mosaic, a common
clipped object is for example a moving pedestrian.

The final mosaic flaw introduced here can only be considered an error in its most
dramatic forms: intensity changes result from the source frame blending process, when
the stitching algorithm balances the brightness of different source images to fade the
intensity differences that exist between source images. A summary of mosaic flaws is
shown in Table 1 and Figure 1 shows visual examples.

2 Related Work

Since our work was originally published in [5], research has progressed in this field.
Paalanen et al. [6] used a framework very similar to ours to evaluate the quality of
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mosaic images. In addition to using artificial sequences as in our work, Paalanen et al.
also propose a methodology that uses real images.

Some time ago Marzotto et al. [7] developed a method of super-resolution video
mosaicking and estimated the quality of the results by measuring the amount of blur-
ring. Clearly this approach is not capable of noticing registration errors. Feldman et
al. [8] has also considered the quality of image mosaics, but his approach is limited to
multi-perspective mosaics.

Swaminathan et al. [9] have developed a metric to quantify effects of projective
distortions in non-single viewpoint imaging, like mosaicking. This method does not
address the question of registration or blending quality, but assumes that the mosaics
are created without errors. Furthermore, the application of this method requires some
knowledge about the structure of the scene that is depicted in the mosaic. Bors et al.[10]
have also analyzed perspective distortions, but the method is applied to image sequences
that are taken from cylindrical surfaces.

Somewhat related to our problem is also the work that has been done in the field of
evaluating the success of image registration. Möller et al. [11] have presented a concept
for analyzing errors in image registration and Schestowitz et al. [12] have developed a
method for assessing the performance of non-rigid registration algorithms.

3 Our Approach

Our approach to measure the performance of mosaicking algorithms was motivated by
the intention to eliminate all possible sources of disturbances in the quality assessment.
To make the testing process as controllable as possible, we have chosen to simulate
the generation of source images (i.e. the imaging process). Practically this is achieved
by using a reference image that acts as real world scenery in the test environment. A
sequence of source images is created from the reference image, as if photographing
a view by multiple shots that cover different areas of the scenery. For every captured
source image, a selected group of common imaging distortions are applied to simulate
real-world shooting conditions.

We assume that the stitching algorithms to be tested are completely automatic and
produce mosaic images from the sequences that they receive. The generated sequence is
handed over to the stitching algorithm that is chosen to be tested. After the mosaicking
algorithm has processed the sequence, a mosaic image and a reference image that depict
the same view are available. However, there exist changes in intensity and projection

Fig. 2. The process of mosaic quality evaluation



110 J. Boutellier et al.

Fig. 3. The simulated imaging environment

between the mosaic and the reference image, as well as possible errors introduced by
the stitching algorithm.

To make the pixelwise comparison between the mosaic and the reference image pos-
sible, the images need to be brought to the same coordinate frame. This is done by
non-rigid image registration. After the registration, the images can be compared with
a selected full-reference quality assessment algorithm [13]. A block diagram of this
process can be seen in Figure 2.

Our approach is only eligible, if the applied image registration algorithm fills two
requirements: a) the registration algorithm must be sufficiently powerful to be able to
register all error-free mosaic images against the reference image and b) the registration
algorithm must be robust enough not to fail even when there are some errors in the
mosaic.

The first requirement can be met sufficiently well with some non-rigid registration
algorithms when the applied distortions of the imaging process are not too severe. The
second requirement is much harder to achieve, since it can happen for example, that the
reference image does not provide enough feature points. Because of these requirements,
we have to assume that the result of our measurement method can only be as reliable as
the non-rigid registration algorithm that it uses.

Related to the registration algorithm, it is also necessary to mention how we define
a stitching error: a deformation in the mosaic image is considered an error, if it intro-
duces a new discontinuity that is not present in the reference image. This also means
that the applied non-rigid registration method must do the registration by a continuous
deformation, not in a piecewise fashion, like block-matching.

3.1 Creating Source Image Sequences

Our method of creating source images can be thought to produce images from a situa-
tion, where the camera is at some fixed distance from the reference image that appears
as a plane in 3D-space. (See Figure 3). As a result, perspective distortions appear in the
source images. In literature this is called the pinhole camera model [14].

Images that are normally delivered to a stitching algorithm for mosaicking have sev-
eral kinds of distortions caused by the camera and imaging process. Real-world camera
lenses cause vignetting and radial distortions to the image [14]. If the user takes pic-
tures freehand, the camera shakes and might cause motion blur to the pictures. Also, it
is common that the camera is slowly rotated from one frame to another when shooting
many pictures of the same scene. Finally, cameras tend to adapt to lighting conditions
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by normalizing the global image brightness according to the brightness of the view that
is seen through the camera lens.

The frames are created by panning the simulated camera view over the reference
image in a zig-zag pattern and by taking shots with a nearly constant interval (see
Figure 4). The camera jitter is modeled by random vertical and horizontal deviations
from the sweeping pattern along with gradually changing camera rotation. Motion blur
caused by camera shaking is simulated by filtering the source image with a point-spread
function consisting of a line with random length and direction.

Camera lens vignetting is implemented by multiplying the source image with a two-
dimensional mask that causes the image intensity to dim slightly as a function of the
distance from the image center. Radial distortions are created by a simple function that
is given in equation 1.

dn = d + kd3, (1)

where
d is the distance from the image center,
dn is the new distance from the center and
k is the distortion strength parameter.

The radial distortion is applied by calculating a new distance for every pixel from
the image center in the source image. The result of this warp is a barrel distortion if the
constant k is positive. Finally, the simulated differences in exposure time are applied to
the source image by normalizing the mean of the image to a constant value.

Figure 5 shows the effect of each step in this simulated imaging process. In the order
from left to right and from top to bottom, the distortions are following: perspective-
warped part of reference image, barrel-distorted, motion blurred, rotated, cropped re-
sult with mean normalized, cropped result with vignetting. Notice that the distortions
accumulate from one sub-figure to the next.

Fig. 4. Camera motion pattern over a reference image and a quadrangle depicting the area in-
cluded in an arbitrary source image
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Fig. 5. The six phases of applying distortions to source images

The source image sequence is recorded as an uncompressed video clip by default,
but can of course be converted to other forms depending on the required input type of
the algorithm that is chosen for testing.

3.2 Mosaic Image Registration

The stitched mosaic image and the reference image have different projections because
the stitching software has had to fit together the source images that contain non-linear
distortions. The mosaic image has to be registered to the coordinates of the reference
image to make the comparison eligible.

For this purpose we selected a SIFT-based [15] feature detection and -matching algo-
rithm1, that produced around one thousand matching feature points for each image pair.
An initial registration estimate is calculated by a 12-parameter polynomial model, after
which definite outliers are removed from the feature point set. The final registration is
made by the unwarpJ -algorithm [16] that is based on a B-spline deformation model. It
is evident that the success of image registration is a most important factor to ensure the
eligibility of the quality measurement. According to the conducted tests, the accuracy
and robustness of unwarpJ are suitable for the purpose, although not perfect.

An example of the registration process can be seen in Figure 7. The topmost image is
a mosaic image created by a stitching algorithm. The middle image in Figure 7 shows
the registered version of the mosaic above, and the image in the bottom shows the
corresponding similarity map (See next subsection). Notice how slight stitching errors
have prevented flawless matching in the bottom-right corner of the image.

1 http://www.cs.ubc.ca/˜lowe/keypoints/
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Fig. 6. Used reference images Fig. 7. Mosaic registration

3.3 Similarity Calculation

Our method uses the recent approach of Wang [13] to estimate the quality of the regis-
tered mosaic. The approach of Wang estimates the similarity of two images and gives a
single similarity index value that tells how much alike the two images are. This method
fits very well to the requirements of mosaic evaluation, since it pays attention on dis-
tortions that are clearly visible for the human vision system. This includes blurring
and structural changes that are common problems in mosaics. Wang’s method does not
penalize for slight changes in the image intensity.

This arrangement will notice blurring and discontinuity -flaws in the mosaic images
that are created from test videos. However, with the current test setup it is not possible
to simulate situations that would cause object clipping.

4 Practical Tests

We used three different stitching algorithms to test the functionality of our test method:
Autostitch [17], Surveillance Stitcher [4] and an algorithm that we shall call Mobile
Stitcher [18]. The algorithms were tested by three different video sequences that were
created from the images shown in Figure 6. Each algorithm was tested with the three
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Table 2. Mosaic quality values and visually observed distortions of test mosaics. The numbers in
braces indicate which figure displays the corresponding result, if it is shown. DC is an abbrevia-
tion discontinuity.

Algorithm Pattern Facade Graffiti
UBC Autostitch 0.81 (7), blur, slight dc 0.89 (8), blur 0.76, blur
Mobile stitcher 0.80 (7), dcs 0.68, dcs 0.65, dcs
Surveillance stitcher 0.75 (7), blur, dc 0.86, blur, slight dc 0.72 (6), blur, dc

Fig. 8. Mosaics created by three different mosaicking algorithms and the corresponding similarity
maps

sequences. Results of subjective mosaic evaluation and quality indexes provided by our
algorithm are visible in Table 2.

We shall take a closer look at one example. The left column in Figure 8 shows mo-
saics created by three different mosaicking algorithms and the right column shows the
corresponding similarity maps. From the similarity maps we can see the locations of
stitching errors as dark areas. The blur that is present in every mosaic can be seen in the
similarity maps as dark object outlines.
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Fig. 9. Effect of stitching errors to the similarity map

The top row shows the results of Autostitch. We can see that the overall quality is all
right, yet there is a dark area in the right border. With careful inspection we notice that
this is caused by the area near the letter ’B’ that is distorted.

The middle row shows the results of the Surveillance Stitcher. It can be easily de-
tected that the dark area near the bottom-right corner is caused by severe discontinuities
that also reflect to the areas left of the distortion.

The pictures in the lowest row are produced by the Mobile Stitcher. The Mobile
Stitcher is not capable of correcting flaws caused by perspective distortions, and there-
fore contains problematic areas here and there. For example, below the rightmost flower,
there is a discontinuity that is marked as a black area in the similarity map. The same
applies for example at the top-right corner that is quite jagged. The Mobile Stitcher has
also left considerable holes to the mosaic near the borders.

We can notice from the results that the acquired quality indexes are not compara-
ble from one sequence to another. The focus of this testing was not to sort the tested
algorithms to some order of quality, but to simply show what kinds of results can be
achieved with our testing method. When the similarity indexes were calculated, 50 pix-
els from each image border were omitted, since the non-linear registration algorithm
was often a bit inaccurate near image borders.
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Autostitch acquired the best results from each test, which can also be detected visu-
ally, since the results are practically absent of discontinuities. The Surveillance Stitcher
acquired second best results, although most of its results had slight discontinuities. The
Mobile Stitcher performed worst in these tests, which is easily explained by the fact
that the algorithm is the only one of the three that uses an area-based registration [19]
method and thus is unable to correct perspective distortions.

Figure 9 shows a mosaic that was created by Autostitch along with some manually
damaged versions of the mosaic. The figure depicts how different kinds of mosaicking
errors affect the similarity map and the numerical quality of the mosaic. The topmost
row shows the already registered mosaic created by Autostitch, which is of good quality
(similarity index 0.89).

In the middle row the mosaic created by Autostitch was tampered manually before
registration so that a discontinuity appears in the lower half of the image. Then this
modified mosaic was registered against the reference image and the similarity map was
calculated. As we can see, the discontinuity has made the corresponding area black in
the similarity map (similarity index 0.83).

In the lowest row of the figure the roof triangle of the building has been manually
blurred before registration. In the similarity map the roof triangle appears darker (simi-
larity index 0.85).

As mentioned earlier, the performance of our comparison approach is heavily de-
pendent on the used image registration algorithm. This came out as the currently used
registration method proved to be inaccurate in one occasion. In Figure 9 each similarity
map indicates that something is wrong in the right end of the building. However, visual
inspection reveals no problems. The reason behind the indicated difference is effec-
tively a misalignment of a few pixels. The misalignment is caused by the lack of feature
points in the reference image and a registration error that has followed from this.

5 Conclusions

We have presented a novel way to measure the performance of stitching algorithms.
The method is directly applicable to computer-based algorithms that can automatically
create mosaic images from source image sequences.

The method could be improved by using depth-varying 3D models, which would test
the capabilities of the algorithms to cope with effects of occlusion and parallax. Also,
the presence of moving objects could be simulated in future versions of the testing
method.

Furthermore, the present similarity computation approach could be replaced with a
more sophisticated approach, such as the one presented by Möller [11].
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Abstract. In this paper, we address the problem of robustly recovering several
instances of a curve model from a single noisy data set with outliers. Using M-
estimators revisited in a Lagrangian formalism, we derive an algorithm that we
call Simultaneous Multiple Robust Fitting (SMRF), which extends the classical
Iterative Reweighted Least Squares algorithm (IRLS). Compared to the IRLS, it
features an extra probability ratio, which is classical in clustering algorithms, in
the expression of the weights. Potential numerical issues are tackled by banning
zero probabilities in the computation of the weights and by introducing a Gaussian
prior on curves coefficients. Applications to camera calibration and lane-markings
tracking show the effectiveness of the SMRF algorithm, which outperforms clas-
sical Gaussian mixture model algorithms in the presence of outliers.

Keywords: Image Analysis, Statistical Approach, Robust Fitting, Multiple Fit-
ting, Image Grouping and Segmentation.

1 Introduction

In this paper, we propose a method for robustly recovering several instances of a curve
model from a single noisy data set with severe perturbations (outliers). It is based on
an extension of the work reported in [1], in which M-estimators are revisited in an
Lagrangian formalism, leading to a new derivation and convergence proof of the well-
known Iterative Reweighted Least Squares (IRLS) algorithm. Following the same ap-
proach based on the Lagrangian framework, we derive, in a natural way, a deterministic,
alternate minimization algorithm for multiple regression, called Simultaneous Multiple
Robust Fitting (SMRF) algorithm. The SMRF can be seen as an extension of the IRLS
algorithm, in which an extra probability ratio, which is classical in clustering algo-
rithms, appears in the expression of the weights. To tackle potential numerical issues,
zero probabilities are banned in the computation of the weights and a Gaussian prior on
the curves coefficients is introduced. Such a prior is, moreover, well-suited to sequential
image processing and provides control on the curves. Applications to camera calibra-
tion and lane-markings tracking illustrate the effectiveness of the SMRF algorithm. In
particular, it outperforms classical Gaussian mixture model algorithms in the presence
of outliers.

J. Braz et al. (Eds.): VISIGRAPP 2007, CCIS 21, pp. 121–133, 2008.
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The paper is organized as follows. In Sec. 2, we present the robust multiple curves
estimation problem and introduce our algorithmic strategy. The resulting algorithm is
given in Sec. 3. Technical details on its derivation and convergence proof are given in
the Appendix. In Sec. 4, connections are made with other approaches in the domain.
Finally, we apply the algorithm to road tracking and to camera calibration, in Sec. 5.

2 Multiple Robust Maximum Likelihood Estimation (MLE)

In this section, we model the problem of simultaneously fitting m curves in a robust
way. Each individual curve is explicitly described by a vector parameter Ãj , 1 ≤ j ≤
m. The observations, y, are given by a linear generative model:

y = X(x)tÃj + b (1)

where (x, y) are the image coordinates of a data point, Ãj = (ãij)0≤i≤d is the vector
of curve parameters and X(x) = (fi(x))0≤i≤d is the vector of basis functions at the
image coordinate x, which will be denoted as X for the sake of simplicity. These vec-
tors are of size d + 1. Example of basis functions will be given in Sec. 5.2. Note that
we consider the fixed design case, i.e. in (1), x is assumed non-random. In that case,
it is shown that certain M-estimators attain the maximum possible breakdown point of
approximately 50% [2]. In all that follows, the measurement noise b is assumed inde-
pendent and identically distributed (iid) and centered. In order to render the estimates
robust to non-Gaussian noise (outliers), we formulate the noise distribution as:

ps(b) ∝ 1
s
e−

1
2φ(( b

s )2) (2)

where ∝ denotes the equality up to a factor, and s is the scale of the pdf. As stated
in [3], the role of φ is to saturate the error in case of a large noise |b| = |XtÃj − y|, and
thus to lower the importance of outliers. The scale parameter, s, controls the distance
from which noisy measurements have a good chance of being considered as outliers.
The algorithm derivation is performed using the half-quadratic approach [4,5] revisited
using classical optimization tools, namely Lagrange duality [1]. The potential function
φ(t) must fulfill the following hypotheses:

– H0: defined and continuous on [0, +∞[ as well as its first and second derivatives,
– H1: φ′(t) > 0 (thus φ is increasing),
– H2: φ′′(t) < 0 (thus φ is concave).

Note that these assumptions are very different from those used in [3], where the conver-
gence proof required that the potential function ρ(b) = φ(b2) be convex. In the present
case, the concavity and monotonicity requirements imply that φ′(t) is bounded, but
φ(b2) is not necessarily convex w.r.t. b.

Our goal is to simultaneously estimate the m curve parameter vectors Aj=1,···,m
from the whole set of n data points (xi, yi), i = 1, · · · , n. The probability of a mea-
surement point (xi, yi), given the m curves is the sum of the probabilities over each
curve:

pi((xi, yi)|Aj=1,···,m) ∝ 1
s

j=m∑
j=1

e−
1
2φ((

Xt
i Aj−yi

s )2).
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Concatenating all curve parameters into a single vector A = (Aj), j = 1, · · · , m of size
m(d + 1), we can write the probability of the whole set of points as the product of the
individual probabilities:

p((xi, yi)i=1,···,n|A) ∝ 1
sn

i=n∏
i=1

j=m∑
j=1

e−
1
2φ((

Xt
i Aj−yi

s )2) (3)

Maximizing the likelihood p((xi, yi)i=1,···,n|A) is equivalent to minimizing the nega-
tive of its logarithm:

eMLE(A) =
i=n∑
i=1

− ln(
j=m∑
j=1

e−
1
2 φ((

Xt
i Aj−yi

s )2)) + n ln(s) (4)

Using the same trick as the one described in [1] for robust fitting of a single curve,

we introduce the auxiliary variables wij = (Xt
i Aj−yi

s )2, as explained in the Appendix.
We then rewrite the value eMLE(A) as the value achieved at the unique saddle point of
the following Lagrange function:

LR =
i=n∑
i=1

j=m∑
j=1

1
2
λij(wij − (

Xt
i Aj − yi

s
)2) +

i=n∑
i=1

ln(
j=m∑
j=1

e−
1
2 φ(wij)) − n ln(s) (5)

Then, the algorithm obtained by alternated minimizations of the dual function w.r.t. λij

and A is globally convergent, towards a local minimum of eMLE(A), as shown in the
Appendix.

3 Simultaneous Multiple Robust Fitting Algorithm

As detailed in the Appendix, minimizing (5) leads to alternate between the three sets of
equations:

wij = (
Xt

i Aj − yi

s
)2, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (6)

λij =
e−

1
2φ(wij)∑k=m

k=1 e−
1
2φ(wik)

φ′(wij), 1 ≤ i ≤ n, 1 ≤ j ≤ m, (7)

(
i=n∑
i=1

λijXiX
t
i )Aj =

i=n∑
i=1

λijyiXi, 1 ≤ j ≤ m (8)

In practice, some care must be taken, to avoid numerical problems and singulari-
ties. First, it is important that the denominator in (7) be numerically non-zero, which
might occur for a data point located far from all curves. Zero probabilities are banned
by adding a small value ε (equal to the machine precision) to the exponential in the
probability pi of a measurement point. As a consequence, when a point with index i is
far from all curves, φ′(wij) is weighted by a constant factor, 1/m , in (7).
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Second, the linear system in (8) can be singular. To avoid this, it is necessary to
enforce a Gaussian prior on the whole curves parameters with bias Apr and covariance
matrix Cpr. Note that the reason for introducing such a prior is not purely technical:
it is indeed a very simple and useful way of taking into account application-specific a
priori knowledge, as shown in Sec. 5.3 and 5.4. As a default prior, we suppose that the
bias is zero, i.e Apr = 0, and that the inverse covariance matrix is block diagonal where
each diagonal block equals:

Cpr−1 = r

∫ 1

−1
X(x)X(x)tdx (9)

assuming that [−1, 1] is the range where x varies. The integral is the inverse covariance
matrix of the curve fitting estimator under a Gaussian noise assumption which can be
used for approximately modeling the truncation errors due to image sampling. The de-
fault prior also accounts for possible correlations between basis functions, which can be
helpful when using non-orthogonal bases. The regularization term (A − Apr)tCpr−1

(A − Apr) is added to (4) and (5). Therefore, the parameter r controls the balance
between the data fidelity term and the prior.

Finally, the Simultaneous Multiple Robust Fitting algorithm (SMRF) is:

1. Initialize the number of curves m, the vector A0 = (A0
j ), 1 ≤ j ≤ m, which

gathers all curves parameters and set the iteration index to k = 1.
2. For all indexes i, 1 ≤ i ≤ n, and j, 1 ≤ j ≤ m, compute the auxiliary variables

wk
ij = (

Xt
i Ak−1

j −yi

s )2 and the weights λk
ij = ε+e

− 1
2 φ(wk

ij)

mε+
∑ j=m

j=1 e
− 1

2 φ(wk
ij

)
φ′(wk

ij).

3. Solve the linear system:

[
D + Cpr−1

]
Ak =

⎡⎢⎣
∑i=n

i=1 λk
i1yiXi

...∑i=n
i=1 λk

imyiXi

⎤⎥⎦ + Cpr−1Apr.

4. If ‖Ak − Ak−1‖ > ε′, increment k, and go to 2, else the solution is A = Ak.

In the above algorithm, D is the block-diagonal matrix whose m diagonal blocks are
the matrices

∑i=n
i=1 λk

ijXiX
t
i of size (d + 1) × (d + 1), with 1 ≤ j ≤ m. The prior

covariance matrix Cpr is of size m(d + 1) × m(d + 1). The prior bias Apr is a vector
of size m(d + 1), as well as A and Ak. The complexity is O(nm) for the step 2, and
O(m2(d + 1)2) for the step 3 of the algorithm.

4 Connections with Other Approaches

The proposed algorithm has important connections with previous works in the field of
regression and clustering and we would like to highlight a few of them.

In the single curve case, m = 1, the SMRF algorithm is reduced to the so-called
Iterative Reweighted Least Squares extensively used in M-estimators [3], half-quadratic
theory [5,4], and others. The SMRF and IRLS algorithms share very similar structures
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and it is important to notice that the main difference lies within the Lagrange multipliers
λij , see (7). Compared to the IRLS, the λij are just weighted by an extra probability
ratio, which is classical in clustering algorithms.

To make the connection with clustering clearer, let us substitute Y = Aj + b to the
generative model (1), where Y and Aj are vectors of same size and respectively denote
a data points and a cluster centroid. The derivation described in Sec. 3 is still valid and
the obtained algorithm turns to be a clustering algorithm with m clusters, each clus-
ter being represented by a vector, its centroid. The probability distribution of a cluster
around its centroid is directly specified by the function φ. The obtained algorithm is
thus able of modeling the Yi’s by a mixture of pdfs which are not necessarily Gaussian.
The mixture problem is usually solved by the well-known Expectation-Minimization
(EM) approach [6]. In the non-Gaussian case, the minimization (M) step implements
robust estimation, which is an iterative process in itself. Hence, the resulting EM algo-
rithm involves two nested loops, while the proposed algorithm features only one. An
alternative to the EM approach is the Generalized EM (GEM) approach which consists
in performing an approximate M-step: typically, only one iteration rather than the full
minimization. The resulting algorithm in the robust case is identical to the one we de-
rived within the Lagrangian framework (apart from the regularization of the singular
cases). In our formalism however, no approximation is made in the derivation of the
algorithm, in contrast with the GEM approach.

We also found that the SMRF algorithm is very close to an earlier work in the context
of clustering [7]. However, to our knowledge, the latter was just introduced as an extra
ad-hoc weighting over M-estimators without statistical interpretation and, moreover,
singular configurations were not dealt with.

The SMRF algorithm is subject to the initialization problem since it only converges to-
wards a local minimum. To tackle this problem, the Graduated Non Convexity approach
(GNC) [8] is used to improve the chances of converging towards the global minimum.
Details are given in Sec. 5.4. The SMRF can be also used as a fitting process within the
RANSAC [9] approach to improve the convergence towards the global minimum.

5 Experimental Results

The proposed approach being based on a linear generative model, many applications
could potentially be addressed using the SMRF algorithm. In this paper, we focus on
two specific applications, namely simultaneous lane-markings tracking and camera cal-
ibration from a regular lattice of lines with geometric distortions. See [13] for more
detail information.

5.1 Noise Model

Among the suitable functions for robust estimation, we use a simple parametric fam-
ily of probability distribution functions, that was introduced in [1] under the name of
smooth exponential family (SEF), Sα,s:

Sα,s(b) ∝ 1
s
e−

1
2φα(( b

s )2) (10)

where, with t = ( b
s )2, φα(t) = 1

α ((1 + t)α − 1).
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Fig. 1. Noise models in the SEF Sα,s. Notice how the tails become heavier as α decreases.

These laws are shown in Figure 1 for different values of α. The smaller the value of α,
the higher the probability of observing large, not to say very large, errors (outliers). This
parameter allows a continuous transition between well-known statistical laws such as
Gauss (α = 1), smooth Laplace (α = 1

2 ) and T-Student (α → 0). This can be exploited
to get better convergence of the SMRF algorithm by using the GNC approach, i.e. by
progressively decreasing α towards 0.

5.2 Road Shape Model

The road shape features (x, y) are given by the lane-marking centers extracted using
the local feature extractor described in [10]. An example of extraction is shown in Fig-
ure 6(b). In practice, we model road lane markings by polynomials y =

∑d
i=0 aix

i.
Moreover, in the flat world approximation, the image of a polynomial on the road un-
der perspective projection is a hyperbolic polynomial with equation y = c0x + c1 +∑d

i=2
ci

(x−xh)i , where ci is linearly related to ai. Therefore, the hyperbolic polynomial
model is well suited to the case of road scene analysis. To avoid numerical problems, a
whitening of the data is performed by scaling the image in a [−1, 1] × [−1, 1] box for
polynomial curves and in a [0, 1] × [−1, 1] box for hyperbolic polynomials, prior to the
fitting.

5.3 Geometric Priors

As noticed in Sec. 3, the use of a Gaussian prior allows introducing useful application-
specific knowledge. For example, using (9) for the diagonal blocks of the inverse prior
covariance matrix, we take into account perturbations due to image sampling.
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Tuning the diagonal elements of Cpr provides control on the curve degree. For poly-
nomials, the diagonal components of the covariance matrix correspond to monomials
of different degrees. The components of degree higher than one are thus set to smaller
values than those of degree zero and one.

Geometric smooth constraints between curves can be enforced by using also non-
zero off-diagonal blocks. In particular, it is a soft way of maintaining parallelism be-
tween curves. As an illustration, considering two lines y = a0 +a1x and y = a′

0 +a′
1x,

the prior covariance matrix is obtained by rewriting (a1 − a′
1)2 in matrix notations:⎡⎢⎢⎣

a0
a1
a′
0

a′
1

⎤⎥⎥⎦
t ⎡⎢⎢⎣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

a0
a1
a′
0

a′
1

⎤⎥⎥⎦
The above matrix, multiplied by an overall factor can be used as an inverse prior covari-
ance Cpr−1. The factor controls the balance between the data fidelity term and the other
priors. Other kinds of geometric smooth constraints can be handled in a similar way,
such as intersection at a given point, or symmetric orientations. These geometric priors
can be combined by adding the associated regularization term (A − Apr)tCpr−1(A −
Apr) to (4) and (5).

5.4 Lane-Markings Tracking

We shall now describe the application of the SMRF algorithm to the problem of tracking
lane markings.

In addition to the previous section, another interesting feature of using a Gaussian
prior is that the SMRF is naturally suitable for being included in a Kalman filtering.
However, this raises the question of the definition of the posterior covariance matrix of
the estimate. Under the Gaussian noise assumption, the estimate of the posterior covari-

ance matrix is well-known for each curve: Cj = s2
(∑i=n

i=1 XiX
t
i

)−1
. Unfortunately,

in the context of robust estimation, the estimation of Cj for each curve Aj is a difficult
issue and only approximate matrices are available. In [10], several approximates were
compared. The underlying assumption for defining all these approximates is that the
noise is independent. However, we found out that in practice, the noise is correlated
from one image line to another. Therefore, all these approximates can be improved
by introducing an had-hoc correction factor which accounts for data noise correlations
in the inverse covariance matrix. We experimentally found that the following factor is
appropriate, for each curve j:

1 −
∑i=n−1

i=1

√
λijwijλi+1,jwi+1,j∑i=n
i=1 λijwij

The approximate posterior covariance matrix for the whole set of curve parameters, A,
is simply built as a block-diagonal matrix made of the individual posterior covariance
matrices for each curve, Cj . This temporal prior can be easily combined with geometric
priors for tracking parallel curves, for instance.
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Fig. 2. Detected lane-markings (in green) and uncertainty about curve position (in red)

(a) (b)

(c) (d)

Fig. 3. Two images extracted from a sequence of 240 images processed with, on (a)(b), separate
Kalman filters and, on (c)(d), simultaneous Kalman filter. The three detected lane-markings of
degree two are in green.

Figure 2 shows the three curves simultaneously fitted on the lane-marking centers
(in green) and the associated uncertainty curves of the horizontal position of each fitted

curve (±
√

X(x)tC−1
j X(x), in red). Notice that the uncertainty on the right sparse

lane-marking is higher than for the continuous one on the center. Moreover, the higher
the distance to the camera, the higher the uncertainty, since the curve gets closer to
possible outliers. In all these experiments, and following, the parameters used for the
noise model are α = 0.1 and s = 4.
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Fig. 4. Six of a 150-image sequence, featuring lane changes. Green lines show the three fitted
lane-markings centers.

Fig. 5. Fitting in adverse conditions: in this excerpt, the left lane-marking is mostly hidden on
two successive images

For the tracking itself, we experimented both separate Kalman filters on individual
curves, and a simultaneous Kalman filter. The former can be seen as a particular case
of the latter, in which the inverse prior covariance matrix Cpr is block-diagonal so the
linear system of size m(d + 1) in the SMRF algorithm can be decomposed as m linear
independent systems of size d+1. Figure 3 compares the results obtained with separate
and simultaneous Kalman filters. Notice how the parallelism between curves is better
preserved within the simultaneous Kalman filter, thanks to an adequate choice of the
off-diagonal blocks of Cpr .

Figure 4 illustrates the ability of the SMRF-based Kalman filter to fit and track sev-
eral curves in an image sequence. In that case, three lane-markings are simultaneously
fitted and correctly tracked, even though the vehicle performs several lane changes
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during the 150-image sequence. Notice that, while Kalman filtering can incorporate
a dynamic model of the vehicle, we only used a static model in these experiments, since
only the images were available. We observed that it is better to initialize the SMRF
algorithm with the parameters resulting from the fitting on the previous image, rather
than with the filtered parameters: filtering indeed introduces a delay in the case of fast
displacements or variations of the tracked curves.

Moreover, we obtained interesting results on difficult road sequences. For instance,
Figure 5 shows a short sequence of poor quality images, due to rain. The left lane-
marking is mostly hidden on two consecutive images. Thanks to the simultaneous
Kalman filter, the SMRF algorithm is able to interpolate correctly the hidden lane-
marking.

5.5 Camera Calibration

We now present another application of the SMRF algorithm, in the context of cam-
era calibration. The goal is to estimate accurately the position and orientation of the
camera with respect to the road and its intrinsic parameters. A calibration setup made
of two sets of perpendicular lines painted on the road is thus observed by a camera
mounted on a vehicle, as shown in Figure 6(a). The SMRF algorithm can be used to
provide accurate data to the calibration algorithm by estimating the grid intersections.
Even though the markings are clearly visible in the image, some of them are quite short,
and there are outliers due to the presence of water puddles. Figure 6(d) shows the ex-
tracted lane-marking centers. When a Gaussian mixture model is used, the obtained fit

(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) Original image of the calibration grid. (d) Extracted lane-marking centers (outliers are
due to puddles). (b) 10 initial lines for the fitting on the vertical markings. (e) Fitted lines on
the vertical markings under Gaussian noise assumption. (c) 12 initial lines for the fitting on the
vertical markings. (f) The robust fitting yields 11 different correct lines.
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is severely troubled by the outliers, as displayed in Figure 6(e), even though the curves
are initialized very close to the expected solution, see Figure 6(b).

On the contrary, with the same extracted lane-marking centers, the SMRF algorithm,
with noise model parameters α = 0.1 and s = 4, leads to nice results, as shown
in Figure 6(f) for the vertical lines. 11 different lines were obtained for the vertical
markings, even if the initial curves where not very close to the solution as illustrated by
Figure 6(c).

6 Conclusions

In the continuing quest for achieving robustness in detection and tracking curves in
images, this paper makes two contributions. The first one is the derivation, in a MLE
approach and using Kuhn and Tucker’s classical theorem, of the so-called SMRF algo-
rithm. This algorithm extends mixture model algorithm, such as the one derived using
EM, to robust curve fitting. It is also an extended version of the IRLS, in which the
weights incorporate an extra probability ratio. The second contribution is the regular-
ization of the SMRF algorithm by introducing Gaussian priors on curve parameters and
the handling of potential numerical issues by banning zero probabilities in the com-
putation of weights. From our experiments, banning zero probabilities seems to have
important positive consequences in pushing the curves to spread out all the data, and
thus in providing improved robustness to the initialization, as shown in the context of
camera calibration. The introduction of the Gaussian prior is also beneficial in partic-
ular in the context of image sequence processing, as illustrated with an application of
simultaneous lane-markings tracking on-board a vehicle in adverse conditions. The ap-
proach being based on a linear generative model, it is quite generic and we believe that it
can be used with benefits in many other fields of computer vision, such as clustering or
appearance modeling, registration, parametric region fitting, as illustrated in [11,12,13].
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Appendix

We shall first rewrite the value −eMLE(A) for any given A = (Aj), j = 1, · · · , m as
the value achieved at the minimum of a convex problem under convex constraints. This

is obtained by introducing the auxiliary variables wij = (Xt
i Aj−yi

s )2. This apparent
complication is in fact valuable since it allows introducing Lagrange multipliers, and
thus to decompose the original problem in simpler problems. The value −eMLE(A)
can be seen as the minimum value, w.r.t. W = (wij)1≤i≤n,1≤j≤m, of:

E(A, W ) =
i=n∑
i=1

ln(
j=m∑
j=1

e−
1
2φ(wij))

subject to nm constraints hij(A, W ) = wij − (Xt
i Aj−yi

s )2 ≤ 0. This is proved by
showing that the bound on each wij is always achieved. Indeed E(A, W ) is decreasing
w.r.t. each wij , since its first derivative:

∂E

∂wij
= −1

2
e−

1
2φ(wij )∑k=m

k=1 e−
1
2φ(wik)

φ′(wij)

is always negative, due to (H1).
To prove the local convergence of the SMRF algorithm in Sec. 3, we now focus on the

minimization of E(A, W ) w.r.t. W only, subject to the nm constraints hij(A, W ) ≤ 0,
w.r.t. W , for any A. We now introduce a classical result of convex analysis [14]: the
function g(Z) = log(

∑j=m
j=1 ezj ) is convex. Due to (H1) and (H2), −φ(w) is convex
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and decreasing. Therefore, E(A, W ) w.r.t. W is convex as a sum of functions g com-
posed with −φ, see [14]. As a consequence, the minimization of E(A, W ) w.r.t. W is
well-posed because it is a minimization of a convex function subject to convex (linear)
constraints. We are thus allowed to apply Kuhn and Tucker’s classical theorem [15]: if
a solution exists, the minimization of E(A, W ) w.r.t. W is equivalent to searching from
the unique saddle point of the Lagrange function of the problem:

LR(A, W, Λ) =
i=n∑
i=1

ln(
j=m∑
j=1

e−
1
2φ(wij))

+
i=n∑
i=1

m∑
j=1

1
2
λij(wij − (

Xt
i Aj − yi

s
)2)

where Λ = (λij), 1 ≤ i ≤ n, 1 ≤ j ≤ m are Kuhn and Tucker multipliers (λij ≥ 0).
More formally, we have proved for any A:

− eMLE(A) = min
W

max
Λ

LR(A, W, Λ) (11)

Notice that the Lagrange function LR is quadratic w.r.t. A, unlike the original error
eMLE . Using the saddle point property, we can change the order of variables W and
Λ in (11). We now introduce the dual function E(A, Λ) = minW LR(A, W, Λ), and
rewrite the original problem as the equivalent following problem:

min
A

eMLE(A) = min
A,Λ

−E(A, Λ)

The algorithm consists in minimizing −E(A, Λ) w.r.t. A and Λ alternately.
minΛ −E(A, Λ) leads to Kuhn and Tucker’s conditions:

λij =
e−

1
2φ(wij)∑k=m

k=1 e−
1
2φ(wik)

φ′(wij) (12)

wij = (
Xt

i Aj − yi

s
)2 (13)

and minAj −E(A, Λ) leads to:

(
i=n∑
i=1

λijXiX
t
i )Aj =

i=n∑
i=1

λijyiXi, 1 ≤ j ≤ m (14)

Using classical results, see e.g. [15], −E(A, Λ) is proved to be convex w.r.t. Λ. The
dual function is clearly quadratic and convex w.r.t. A. As a consequence, this implies
that such an algorithm always strictly decreases the dual function if the current point
is not a stationary point (i.e a point where the first derivatives are all zero) of the dual
function [16]. The problem of stationary points is easy to solve by checking the posi-
tiveness of the Hessian matrix of E(A, Λ). If this matrix is not positive, we disturb the
solution so that it converges to a local minimum. This proves that the algorithm is glob-
ally convergent, i.e, it converges toward a local minimum of eMLE(A) for all initial
A0’s which are neither a maximum nor a saddle point.
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Abstract. As part of our work on hand gesture interpretation, we present our 
results on hand shape recognition. Our method is based on attribute extraction 
and multiple partial classifications. The novelty lies in the fashion the fusion of 
all the partial classification results are performed. This fusion is (1) more effi-
cient in terms of information theory and leads to more accurate results, (2)  
general enough to allow heterogeneous sources of information to be taken into 
account: Each classifier output is transformed to a belief function, and all the 
corresponding functions are fused together with other external evidential 
sources of information. 

Keywords: SVM, Expert systems, HMM, Belief functions, Hu invariants, 
Hand shape and gesture recognition, Cued Speech, probabilistic transform. 

1   Introduction 

Hand shape recognition is a widely studied topic which has a wide range of applica-
tions such as HCI [1], automatic gesture translators, tutoring tools for the hearing-
impaired [2], [3], augmented reality, and medical image processing. 

Even if this field is dominated by Bayesian methods, several recent studies deal 
with evidential methods, as they bring a certain advantage in the fashion uncertainty 
is processed in the decision making [4], [5]. 

The complete recognition of a hand shape with no constraint on the shape is an 
open issue. Hence, we focus on the following problem: (1) the hand is supposed to 
roughly remain in a plan which is parallel to the acquisition plan (2) only nine differ-
ent shapes are taken into account (Fig. 1a). No assumptions are made on the respec-
tive location of the fingers (whether they are gathered or not, which drastically  
increases the inner variance of each shape); except for hand shapes 2 (gathered fin-
gers) and 8 (as separated as possible), as this is their only difference. These nine hand 
shapes correspond to the gesture set used in Cued Speech [6]. 

There are many methods already developed to deal with hand modeling and analysis. 
For a complete review, see [7], [8]. In this paper, we do not develop the segmentation 
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(a) Artificial representation of the hand shape classes. 

 
(b) Segmented hand shape examples from real data. 

Fig. 1. The 9 hand shape classes 

aspect. Hence, we consider several corpora of binary images such as in Fig. 1b, as the 
basis of our work. The attribute extraction is presented in Section 2. The required classi-
fication tools are presented in Section 3. Section 4 is the core of this paper: we apply the 
decision making method, which is theoretically presented in [9], to our specific problem, 
and we use its formalism as a framework in which it is possible to combine classifiers of 
various nature (SVMs and expert systems) providing various partial information. Finally, 
Section 5 provides experimental results, and Section 6 discusses possible theoretical  
extensions. 

2   Attribute Definition 

2.1   Hu Invariants 

The dimensionality of the definition space for the binary images we consider is very 
large, and it is intractable to use pixel values to perform the classification. One needs 
to find a more compact representation of the image. Several such binary image de-
scriptors are to be found in the image compression literature [10]. They can be classi-
fied into two main categories:  

 Region descriptors, which describe the binary mask of a shape, such as Zernike 
moments, Hu invariants, and grid descriptors. 

 Edge descriptors, which describe the closed contour of the shape, such as Fou-
rier descriptors, and Curvature Scale Space (CSS) descriptors.  

Region descriptors are less sensitive to edge noise because of an inertial effect of 
the region description. Edge descriptors are more related to the way human compare 
shapes.  

A good descriptor is supposed to obey several criteria, such as geometrical invari-
ance, compactness, being hierarchical (so that the precision of the description can be 
truncated), and being representative of the shape. 

We focus on Hu invariants, which are successful in representing hand shapes [11]. 
Note that parallel studies are conducted on promising Fourier-Mellin Descriptors. The 
Hu invariants’ purpose is to express the mass repartition of the shape via several  
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inertial moments of various orders, on which specific transforms ensure invariance to 
similarities. 

Let us compute the classical definition of centered inertial moments of order p+q, 
for the shape (invariant to translation, as they are centered on the gravity center): 

( ) ( ) ( , )
p q

pq

x y

m x x y y x y dx dyδ= − −∫∫
 

(1) 

with andx y  being the coordinates of the center of gravity of the shape and 
( , ) 1x yδ =  if the pixel belongs to the hand shape and 0 otherwise. In order to make 

these moments invariant to scale, we normalize them: 
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m
n

m
+ +

=  
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Then, we compute the six Hu invariants, which are invariant to rotation, and mirror 
reflection: 
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(3) 

A seventh invariant is available. Its sign permits to discriminate mirror images and 
thus, to suppress the reflection invariance: 

( ) ( ) ( ) ( )( )
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− − ⋅ ⋅ + ⋅ ⋅ + + +

 
(4) 

The reflection invariance has been removed at the acquisition level and only left 
hands are processed. Hence, we do not need to discriminate mirror images. We never-
theless use S7 as both the sign and the magnitude carry information: it sometimes oc-
curs that hand shapes 3 and 7 (both with separated fingers) really look like mirror 
images. Finally, the attributes are: {S1, S2, S3, S4, S5, S6, S7}. 

2.2   Thumb Presence 

The thumb is an easy part to detect, due to its peculiar size and position with respect 
to the hand. Moreover, the thumb presence is a very discriminative piece of evidence 
as three hand shapes require the thumb and six do not require it. The thumb detector 
works as follows: 
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(a) Binary hand shape 
image. 

(b) Hand polar parametric representation along the curvilinear 
abscissa τ (distance ρ and angle θ). The thumb is within a peculiar 
distance and angle range (horizontal lines). 

Fig. 2. Thumb detection 

(1) Polar parametric definition: By following the contour of the hand shape, a pa-
rametric representation {ρ(τ), θ(τ)} is derived in polar coordinates (Fig.2a)  

(2) Peak detection: After smoothing the parametric functions, (low-pass filtering 
and sub-sampling), the local maxima of the ρ function are detected. Obviously, they 
correspond to the potential fingers (Fig.2b). 

(3) Threshold adaptation: Thresholds must be defined on the distance and the an-
gle values to indicate the region in which a thumb is plausible. The angle thresholds 
that describe this region are derived from morphological statistics [12] : in practice, 
the thumb angle with respect to the horizontal axis (Fig.2b) is between 20° and 65°. 
The distance thresholds are derived from a basic training phase whose main purpose 
is to adapt the default approximate values (1/9 and 5/9 of the hand length) via a scale 
normalization operation with respect to the length of the thumb.  Even if the operation 
is simple, it is mandatory to do so, as the ratio of the thumb length with respect to the 
total hand length varies from hand to hand. 

(4) Peak measurement: If a finger is detected in the area defined by these thresh-
olds, it is the thumb. Its height with respect to the previous local minima (Fig.2) is 
measured. It corresponds to the height between the top of the thumb and the bottom of 
the inter-space between the thumb and the index. This value is the thumb presence 
indicator (it is set to zero when no thumb is detected). In practice, the accuracy of the 
thumb detection (the thumb is detected when the corresponding indicator has a non-
zero value) reaches 94% of true detection with 2% of false alarms. 

The seven Hu invariants and the thumb presence indicator are used as attributes for 
the classification. 

3   Classification Tools 

3.1   Belief Functions and the Transfer Belief Model (TBM) 

In this section, we briefly present the necessary background on belief functions. For 
deeper comprehension of these theories, see [13] and [14]. 

Let Ω be the set of N exclusive hypotheses h1…hN. We call Ω the frame of dis-
cernment, or the frame, for short. Let m(.) be a belief function on 2Ω (the powerset of 
Ω) that represents our mass of belief in the propositions that correspond to the ele-
ments of 2Ω: 
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(5) 

Note that:  

−Belief can be assigned to non-singleton propositions, which allows modeling the 
hesitation between elements; 

−In the TBM, it is possible to associate a belief in Ø. It corresponds to conflict in 
the model, throughout an assumption in an undefined hypothesis of the frame or 
throughout a contradiction between the information on which the decision is made.  

To combine several belief functions (each associated to one specific captor) into a 
global belief function (under associativity and symmetry assumptions), one uses the 
conjunctive combination. For N belief functions, m1…mN, defined on the same frame 
Ω, the conjunctive combination is defined as:  

 

(6) 

with  being the set of belief functions defined on Ω and m(∩) being the global 

combined belief function. Thus, m(∩) is calculated as: 

 
(7) 

The conjunctive combination means that, for each element of the power set, its be-
lief is the combination of all the beliefs (from the N sources) which imply it: it is the 
evidential generalization of the logical AND. 

After having fused several beliefs, the knowledge in the problem is modeled via a 
function over 2Ω, which expresses the potential hesitations in the choice of the solu-
tion. In order to provide a complete decision, one needs to eliminate this hesitation. 
For that purpose, we use the Pignistic Transform [14], which maps a belief function 
from 2Ω onto Ω, on which a decision is easy to make. The Pignistic Transform is de-
fined as: 

 
(8) 

where A is a subset of Ω, or equivalently, an element of 2Ω, and |A| its cardinal when 
considered as a subset of Ω. This transform corresponds to sharing the hesitation be-
tween the implied hypotheses, and normalizing the whole by the conflictive mass. 

As an illustration of all these concepts, let us consider a simple example: Assume 
that we want to automatically determine the color of an object. The color of the object 
can be one of the primary colors: red (R), green (G) or blue (B). The object is ana-
lyzed by two sensors of different kind, each giving an assumption of its color. 

 



142 T. Burger et al. 

Table 1. Numerical example for belief function use 

 

The observations of the sensors are expressed as belief functions m1(.) and m2(.) 

and the frame is defined as Ωcolor = {∅, R, G, B, {R, G}, {R, B}, {B, G}, {R, G, B}} 
representing the hypothesis about the color of the object. Then, they are fused to-
gether into a new belief function via the conjunctive combination. As the object has a 
single color, the belief in union of colors is meaningless from a decision making point 
of view.  Hence, one applies the Pignistic Transform on which a simple argmax deci-
sion is made. This is summarized and illustrated in Table 1. 

3.2   Support Vector Machines 

SVMs [15], [16] are powerful tools for binary classification. Their purpose is to  
extract the correlation of the attributes for each class by defining a separating  
hyperplane derived from a training corpus, which is supposed to be statistically repre-
sentative of the classes involved. The hyperplane is chosen among all the possible 
hyperplanes through a combinatorial problem optimization, so that it maximizes the 
distance (called the margin) between each class and the hyperplane itself (Fig. 3a & 
Fig. 3b). 

To deal with the nine hand shapes in our database, a multiclass classification with 
SVMs must be performed. As SVMs are restricted to binary classification, several 
strategies are developed to adapt them for multiclass classification problems [17]. For 
 

 

  

(a) (b) 

Fig. 3. (a) Combinatorial optimization of the hyperplane position under the constraints of the 
training corpus item positions. (b) The SVM provides good classification despite the bias of the 
training. 
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that purpose, we have developed our own scheme [9], the Evidential Combination, 
which fuses the outputs of the SVMs using the belief formalism, and which provides a 
robust way of dealing with uncertainties. The method can be summarized by the  
following three steps: 

(1) 36 SVMs are used to compare all the possible class pairs among nine classes; 
(2) A belief function is associated to each SVM output, to model the partial knowl-

edge brought by the corresponding partial binary classification; 
(3) The belief functions are fused together with a conjunctive combination, in or-

der to model the complete knowledge of the problem, and to make a decision accord-
ing to its value. 

Classically, SVM outputs are +1 or -1, depending on the class chosen, but it re-
mains a binary decision with respect of the two classes involved. Then, all the binary 
outputs are fused by a voting process. Unfortunetaly, (1) the votes are in ties for two 
or more classes, (2) the various outputs are not consistent: SVM_1 chooses class_A 
rather than class_B, SVM_2 chooses class_B rather than class_C, and SVM_3, 
class_C rather than class_A. In order to deal with such situations, methods have been 
proposed to convert the SVM outputs into probabilistic distributions, but, in [17], 
these methods are said to be equivalent to voting. On the contrary, our Evidential 
Combination has proved to be efficient on various datasets [9]. 

4   Decision Scheme 

4.1   Belief in the Thumb Presence 

In order to fuse the information from the thumb presence indicator with the output of 
the SVM classifier, one needs to represent it with a belief function. As it is impossible 
to have a complete binary certitude on the presence of the thumb (it is possible to be 
misled at the thumb detection stage as explained previously), we use a belief function 
which authorizes hesitation in some cases.  

  

(a) (b) 

Fig. 4. (a) The peak height determines (b) the belief in the presence of the thumb 

From an implementation point of view, we use a technique based on fuzzy sets, as 
explained in Fig. 4: The higher the peak of the thumb is, the more confident we are in 
the thumb presence. This process is fully supported by the theoretical framework of 
belief functions, as the set of the finite fuzzy sets defined on Ω is a subset of   (the 
set of belief functions defined on Ω). Moreover, as belief functions, fuzzy sets have 
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special properties which make them convenient to fuse with the conjunctive combina-
tion [18]. Note that it is roughly the same technique as the one used to associate a 
belief function to the output of each SVM. 

The three values that define the support of the hesitation in Fig. 4b have been 
manually fitted according to observations on the training set. Making use of the 
"fuzziness" of the threshold between the thumb presence and absence, these values 
are not necessarily precisely settled. In practice, they are defined via three ratios (1/5, 
1/20 and 1/100) of the distance between the center of palm and the furthest element 
from it of the contour. 

Then, the belief in the presence of the thumb can be associated to a belief in some 
hand shapes to produce a partial classification: In hand shapes 0, 1, 2, 3, 4, and 8, 
there is no thumb, whereas it is visible for shapes 5, 6 and 7. In case of hesitation in 
the thumb presence, no information is brought and the belief is associated to Ω. 

 

Fig. 5. Global fusion scheme for hand shape classification 

4.2   Partial Classification Fusion 

Thanks to the evidential formalism, it is possible to fuse partial information from 
various classifiers (36 SVMs and 1 expert system) through the conjunctive combina-
tion (Fig. 5). In that fashion, it is possible to consider a SVM-based system and inte-
grate it into a wider data fusion system. 

This fusion provides a belief function over the powerset 2Ω of all the possible hand 
shapes Ω. This belief is mapped over Ω via the Pignistic Transform, to express our 
belief in each singleton element of Ω. Then, the decision is made by an argmax func-
tion over Ω. 

( )* argmax BetP(.)D
Ω

=  (9) 
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5   Results 

In this section, we present various results on the methodology described above. In 5.1, 
the database and the evaluation methods are detailed. In 5.2, the experiments and cor-
responding results are given. 

5.1   Database and Methodology 

The hand shape database used in this work is obtained from Cued Speech videos. The 
transition shapes are eliminated manually and the remaining shapes are labeled and 
used in the database as binary images representing the 9 hand shapes (Fig. 1). 

Table 2. Details of the database 

Hand Shape Corpus 1 
(Training set) 

Corpus 2 
(Test set) 

0 37 12 
1 94 47 
2 64 27 
3 84 36 
4 72 34 
5 193 59 
6 80 46 
7 20 7 
8 35 23 

Total 679 291 

The training and test sets of the database are formed such that there is no strict corre-
lation between them. To ensure this, two different corpuses are used in which a single 
user is performing two completely different sentences using Cued Speech. The respec-
tive distribution of the two corpora are given in Table 2. The statistical distribution of 
the hand shapes is not balanced at all within each corpus. The reason of such a distribu-
tion is related to the linguistics of Cued Speech, and is beyond our scope. 

For all the experiments, Corpus 1 is used as the training set for the SVMs and Cor-
pus 2 is used as the test set. Since the real labels are known, we use the classical defi-
nition of the accuracy to evaluate the performance of the classifier: 

Νumber Οf Well Classified Items
100

Τotal Νumber Οf Ιtems
Accuracy = ⋅  (10) 

To fairly quantify the performances of each classification procedure, two indicators 
are used: (1) The difference between the respective accuracies, expressed in the num-
ber of point ∆Point, and (2) the percentage of avoided mistake %AvMis: 

( ) ( )_ 2 _1Point Accuracy Method Accuracy Method∆ = −  
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( )

Number of Avoided Mistakes
% 100

Total Number of Mistakes

100
100 _1

AvMis

Point

Accuracy Method

= ⋅

∆= ⋅
−

 (11) 

5.2   Experiments 

The goal of the first experiment is to evaluate the advantage of the evidential fusion 
for the SVM. Thus, we compare the classical methods for SVM multi-classification to 
the one of [9]. For both of the methods, the training is the same and the SVMs are 
tuned with respect to the training set and the thumb information is not considered. 

For the implementation of the SVM functionalities, we use the open source C++ 
library LIBSVM [19]. We use:  

 C-SVM, which is an algorithm to solve the combinatorial optimization. 
The cost parameter is set to 100,000 and termination criteria to 0.001. 

 Sigmoid kernels in order to transform the attribute space so that it is line-
arly separable: 

( ), ( , ) tanh
with 0.001 and 0.25

T
RKer u v u v R

R
γ γ

γ
= ⋅ ⋅ +

= = −  (12) 

For the evidential method, we have made various modifications on the software so 
that the SVM output is automatically presented throughout the evidential formalism [9].  

The results are presented in Table 3, as the test accuracy of the classical voting 
procedure and the default tuning of the evidential method. The improvement in 
∆Point is worth 1.03 points and corresponds to an avoidance of mistakes of 
%AvMis = 11.11%.  

Table 3. Results for experiments 1 & 2 

    

     Evidential method 

 

Classical 
Voting 
proce-
dure 

Default  
(no thumb detec-

tion) 

With Thumb 
Detection 

Test 
Accuracy 90.7% 91.8% 92.8% 

    

The goal of the second experiment is to evaluate the advantage of the thumb in-
formation. For that purpose, we add the thumb information to the evidential method. 
Thus, the training set is used to set the two thresholds, which defines the possible dis-
tance with respect to the center of palm. However, the thumb information is not used 
during the training of the SVMs as they only work on the Hu invariants, as explained 
in Fig. 5. The results with and without the thumb indicator are presented in Table 3.  
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Table 4. Confusion matrix for the second method on Corpus 2, with the Thumb and NoThumb 
superclasses framed together 

 
 

         

  0 1 2 3 4 5 6 7 8 
           
0  12 0 0 0 0 0 0 0 0 
1  0 46 0 0 0 0 0 0 1 
2  0 2 23 2 0 0 0 0 0 
3  0 2 0 29 2 2 1 0 0 
4  0 0 0 1 32 0 0 0 1 
5  0 0 0 0 0 58 0 1 0 
6  0 0 2 0 0 0 41 3 0 
7  0 0 0 0 0 0 1 6 0 
8  0 0 0 0 0 0 0 0 23 

    

The evidential method that uses the thumb information provides an improvement 
of 2.06 points with respect to the classical voting procedure, which corresponds to an 
avoidance of 22.22% of the mistakes. Table 4 presents the corresponding confusion 
matrix for the test set: Hand shape 3 is often misclassified into other hand shapes, 
whereas, on the contrary, hand shape 1 and 7 gather a bit more misclassification from 
other hand shapes. Moreover, there are only three mistakes between THUMB and 
NO_THUMB super-classes. 

6   Discussion and Theoretical Outlook 

We have presented a method and experimental data which demonstrates that the Evi-
dential Combination of SVM is an interesting tool to fuse SVM-processed data in a 
wider data fusion scheme. Consequently, the next challenge is to find a method so 
that other non-evidential classifier outputs can be considered in the evidential frame-
work. In fact, it is required to guarantee that this method is available on SVM and 
expert systems, but also on other classifiers, in what we have called a “wider fusion 
scheme”.  

Of course, as explained in [9], the method also fits any binary classifier in which 
the minimum distance to the separating hyperplane is known (the margin), as it is the 
only required point to define the belief function. In case no such margins are avail-
able, it is possible to experimentally define them, via training or cross validation. In 
[20], we have applied this paradigm to video recognition of American Sign Language. 
Each sign is modeled by a Hidden Markov Model (HMM) and binary classifiers are 
derived from pairwise comparisons of the HMM likelihood scores. The very satisfy-
ing results show the efficiency of the method. But, it also demonstrates that it is not 
limited to binary classifiers; as a matter of fact, the derivation of binary classifiers 
from pairwise comparison is somehow artificial, and as a consequence, it is more 
straightforward to directly handle such unary classifiers (such as HMM). Hence, our 
method is also efficient on unary classifiers based on their generative properties.  

Moreover, let us point out another fact: Practically, the result of a set of HMMs is a set 
of likelihood scores, i.e. a subjective probability distribution prior to any normalization. 
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Thus, this work is a good source of inspiration to provide a method to convert a probabil-
ity into a belief function. As several such transformation methods are defined in incom-
patible fashions in the literature, such as [21], and as the relationships between belief 
functions and probabilities are a topic of strong debates [22], this subject should be care-
fully considered. Thus, we do not address it with respect to its epistemological dimen-
sion, and we stick to strict and simple computational considerations. As an introduction 
to further theoretical development, we propose to consider the following computation as 
an eventual interesting way to convert a probability distribution into a belief function: 
First of all, we make the assumption that the Pignistic Transform defines the relationships 
between probabilities and BF (which is a strong assumption on which the entire commu-
nity does not agree). Moreover, we consider in this computational outlook that, any  
difference in the probability of two possible outcome gives an evidential clues that the 
outcome of higher probability is more likely to be believed in; and the quantification of 
the corresponding belief function is proportional to the difference of the probabilities 
(this later assumption is slightly more likely to be taken for granted). It is possible to de-
rive N-1 belief functions from the comparison of N ordered probability (from the highest 
value to the smallest) values corresponding to N outcomes. The Pignistic Transform of 
their conjunctive combination should give the original probability distribution: 

PigT(m1  (∩)  m2( (∩) ... (∩)  mN-1) = p 
with PigT corresponding to the pignistic transform. As, any of the mi belief functions 
is defined on the powerset of two outcomes, it is possible to simplify the computation 
of the conjunctive combination (where m(∩) corresponds to the results of the combina-
tion of the  mi) : 
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Then, the application of the pignistic transform gives: 
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where Ci corresponds to the ith outcome. As we have assumed that BetP(Ci) = P(Ci), 
one has : 
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m i
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−

=

−Ω = − ⋅
Ω∏

C C

 

which can be iteratively computed, and which set the N-1 mi with respect to the N-1 
pairwise subtractions P(Ci)–P(Ci+1) of the probability distribution. 

7   Conclusions 

In this paper, we propose to apply a belief-based method for SVM fusion to hand 
shape recognition. Moreover, we integrate it in a wider classification scheme which 
allows taking into account other sources of information, by expressing them in the 
Belief Theories formalism. The results are better than with the classical methods 
(more than 1/5 of the mistakes are avoided) and the absolute accuracy is high with 
respect to the number of classes involved. Directions for future work are presented in 
the last section, where we derive from a computational point of view, a method that 
could potentially convert a probability distribution into a belief function. The conse-
quences of this computation from an information theory point of view are not ex-
plored yet, so that it is not possible to assess the interest of this work yet, but this is 
the matter of our next investigations. 
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Abstract. We study the human action recognition problem based on motion fea-
tures directly extracted from video. In order to implement a fast human action
recognition system, we select simple features that can be obtained from non-
intensive computation. We propose to use the motion history image (MHI) as our
fundamental representation of the motion. This is then further processed to give
a histogram of the MHI and the Haar wavelet transform of the MHI. The com-
bination of these two features is computed cheaply and has a lower dimension
than the original MHI. The combined feature vector is tested in a Support Vector
Machine (SVM) based human action recognition system and a significant per-
formance improvement has been achieved. The system is efficient to be used in
real-time human action classification systems.

Keywords: Event recognition, Human action recognition, Video analysis, Sup-
port Vector Machine.

1 Introduction

Event detection in video is becoming an increasingly important computer vision appli-
cation, particularly in the context of activity classification [1]. Event recognition is an
important goal for building intelligent systems which can react to what is going on in
a scene. Event recognition is also a fundamental building block for interactive systems
which can respond to gestural commands, instruct and correct a user learning athletics,
gymnastics or dance movements, or interact with live actors in an augmented dance or
theatre performance.

Recognizing actions of human actors from digital video is a challenging topic in
computer vision with many fundamental applications in video surveillance, video in-
dexing and social sciences. Feature extraction is the basis to perform many differ-
ent tasks with video such as video object detection, object tracking and object
classification.

Model based method are extremely challenging as there is large degree of variability
in human behaviour. The highly articulated nature of the body leads to high dimensional
models and the problem is further complicated by the non-rigid behaviour of clothing.
Computationally intensive methods are needed for nonlinear modeling and optimisa-
tion. Recent research into anthropology has revealed that body dynamics are far more

J. Braz et al. (Eds.): VISIGRAPP 2007, CCIS 21, pp. 151–163, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



152 H. Meng, N. Pears, and C. Bailey

complicated than was earlier thought, affected by age, ethnicity, gender and many other
circumstances [2].

Appearance-based models are based on the extraction of a 2D shape model directly
from the images, to be classified (or matched) against a trained one. Motion-based mod-
els do not rely on static models of the person, but on human motion characteristics.
Motion feature extraction and selection are two of the key components in these kinds
of human action recognition systems.

In this paper, we study the human action classification problem based on motion
features directly extracted from video. In order to implement fast human action recog-
nition, we select simple features that can be obtained from non-intensive computation.
In particular, we use the Motion History Image (MHI) [3] as our fundamental feature.
We propose novel extraction methods to extract both spatial and temporal information
from these initial MHI representations and we combine them as a new feature vector
that has a lower dimension and provides better motion action information than the raw
MHI information. This feature vector was used in a Support Vector Machine (SVM)
based human action recognition system.

The rest of this paper is organised as follows: In section 2, we will give an intro-
duction to some related work. In section 3, we give a brief overview of our system. In
section 4, the detailed techniques of this system are explained including motion fea-
tures, feature extraction methods and SVM classifier. In section 5, some experimental
results are presented and compared. In section 6, the same combination idea has been
tested on other features and significant improvement is also achieved. Finally, we give
the conclusions.

2 Previous Work

Aggarwal and Cai [1] present an excellent overview of human motion analysis. Of
the appearance based methods, template matching has increasingly gained attention.
Bobick and Davis [3] use Motion Energy Images (MEI) and Motion History Images
(MHI) to recognize many types of aerobics exercises. While their method is efficient,
their work assumes that the actor is well segmented from the background and centred
in the image.

Schuldt [4] proposed a method for recognizing complex motion patterns based on local
space-time features in video and demonstrated such features can give good classification
performance. They construct video representations in terms of local space-time features
and integrate such representations with SVM classification schemes for recognition.

Ke [5] studies the use of volumetric features as an alternative to the local descriptor
approaches for event detection in video sequences. They generalize the notion of 2D
box features to 3D spatio-temporal volumetric features. They construct a real-time event
detector for each action of interest by learning a cascade of filters based on volumetric
features that efficiently scans video sequences in space and time. This event detector
recognizes actions that are traditionally problematic for interest point methods such
as smooth motions where insufficient space-time interest points are available. Their
experiments demonstrate that the technique accurately detects actions on real-world
sequences and is robust to changes in viewpoint, scale and action speed.
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Weinland [6] introduces Motion History Volumes (MHV) as a free-viewpoint repre-
sentation for human actions in the case of multiple calibrated, and background-
subtracted, video cameras.

We note that the feature vector in these two methods is very expensive to construct
and the learning process is difficult, because it needs a big data set for training.

Wong and Cipolla [7] proposed a new method to recognise primitive movements
based on the Motion Gradient Orientation (MGO) image directly from image
sequences. This process extracts the descriptive motion feature without depending on
any tracking algorithms. By using a sparse Bayesian classifier, they obtained good clas-
sification results for human gesture recognition.

Ogata [8] proposed another efficient technique for human motion recognition based
on motion history images and an eigenspace technique. In the proposed technique, they
use Modified Motion History Images (MMHI) feature images and the eigenspace tech-
nique to realize high-speed recognition. The experiment results showed satisfactory
performance of the technique. However, the eigenspace still needs to be constructed
and sometimes this is difficult.

Recently, Dalal [9] proposed a Histogram of Oriented Gradient (HOG) appearance
descriptors for image sequences and developed a detector for standing and moving peo-
ple in video. In this work, several different motion coding schemes were tested and it
was shown empirically that orientated histograms of differential optical flow give the
best overall performance.

Oikonomopoulos [10] introduced a sparse representation of image sequences as a
collection of spatiotemporal events that are localized at points that are salient both in
space and time for human actions recognition.

These two methods need to detect salient points in the frames and then make suit-
able features for classification. This implies significant computational cost for detecting
these points.

Meng [11] proposed a fast system for human action recognition which was based
on very simple features. They chose MHI, MMHI, MGO and a linear classifier SVM
for fast classification. Experimental results showed that this system could achieve good
performance in human action recognition. Further, they [12] proposed to combine two
kinds of motion features MHI and MMHI together and achieved better performance
in human action recognition based on a linear SVM 2K classifier [13] [14]. However,
both these systems could only work well in specific real-time applications with limited
action classes because the overall performance on real-world challenging database were
still not good enough.

3 Overall Architecture

We propose a novel architecture for fast human action recognition. In this architecture,
a linear SVM was chosen and MHI provided our fundamental features. In contrast with
the system in [11], we propose novel extraction methods to extract both spatial and
temporal information from these initial MHI features and combine them in an efficient
way as a new feature vector that has lower dimension and provides better motion action
information than the raw MHI feature vector.
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There are two reasons for choosing a linear SVM as the classifier in the system.
Firstly SVM is a classifier that has achieved very good performance in lots of real-world
classification problems. Secondly, SVM can deal with very high dimensional feature
vectors, which means that there is plenty of freedom to choose the feature vectors.
Finally the classifier is able to operate very quickly during the recognition process.

The overall architecture of the human action system is shown in figure 1. There are
two parts in this system: a learning part and a classification part.

MHI Images

Training SVM
classifiers

Maintain the SVM's
parameters

Learning part Recognition part

Histogram
features

Haar wavelet
transform

Learning action
video clips

Combined
feature vectors

MHI Image

SVM classifiers

Recognizing the
action

Histogram
feature

Haar wavelet
transform

Input video clip

Combined
feature vector

Fig. 1. SVM based human action recognition system. In the learning part, the combined feature
vector of Haar wavelet transform and histogram of MHI were used for training a SVM classifier,
and the obtained parameters were used in the recognition part.

The MHI feature vectors are obtained directly from human action video clips. The
2-D Haar wavelet transform was employed to extract spatial information within the
MHI, while temporal information was extracted by computing the histogram of the
MHI. Then these two feature vectors were combined to produce a lower dimensional
and discriminative feature vector. Finally, the linear SVM was used for the classification
process.

The learning part is processed using video data collected off-line. After that, the ob-
tained parameters for the classifier can be used in a small, embedded computing device
such as a field-programmable gate array (FPGA) or digital signal processor (DSP) based
system, which can be embedded in the application and give real-time performance.

It should be mentioned here that, both 2-D Haar wavelet transform and histogram
of the MHI are achieved with very low computational cost. We only keep the low-
frequency part of the Haar wavelet transform. So the total dimension of the combined
feature vector is lower than that of the original MHI feature.

4 Detail of the Method

In this section, we will give the detailed information of the key techniques used in our
human action recognition system.
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4.1 Motion Features

The recording of human actions usually needs large amounts of digital storage space
and it is time consuming to browse the whole video to find the required information.
It is also difficult to deal with this huge data in detection and recognition. Therefore,
several motion features have been proposed to compact the whole motion sequence
into one image to represent the motion. The most popular of these are the MHI, MMHI
and MGO. These three motion features have the same size as the frame of the video,
but they maintain the motion information within them. In [11], it has been found that
MHI achieved best performance in classification tests across six categories of action
sequence.

A motion history image (MHI) is a kind of temporal template. It is the weighted
sum of past successive images and the weights decay as time lapses. Therefore, an MHI
image contains past raw images within itself, where most recent image is brighter than
past ones.

Normally, an MHI Hτ (u, v, k) at time k and location (u, v) is defined by the follow-
ing equation 1:

Hτ (u, v, k) = { τ if D(u, v, k) = 1
max{0, Hτ(u, v, k) − 1}, otherwise

(1)

where D(u, v, k) is a binary image obtained from subtraction of frames, and τ is the
maximum duration a motion is stored. In general, τ is chosen as constant 255 where
MHI can be easily represented as a grayscale image. An MHI pixel can have a range of
values, whereas the Motion Energy Image (MEI) is its binary version. This can easily
be computed by thresholding Hτ > 0 .

4.2 Histogram of MHI

The histogram of the MHI has bins which record the frequency at which each value
(gray-level) occurs in the MHI, excluding the zero value, which does not contain any
motion information of the action. Thus, typically we will have bins between 1 and 255
populated by one or more groupings, where each grouping of bins represents a motion
trajectory. Clearly the most recent motion is at the right of the histogram, with the
earliest motions recorded in the MHI being more toward the left of the histogram. The
spread of each grouping in the histogram indicates the speed of the motion, with narrow
groupings indicating fast motions and wide groupings indicating slow motions.

4.3 Haar Wavelet Transform

The Haar wavelet transform decomposes a signal into a time-frequency field based
on the Haar wavelet function basis. For discrete digital signals, the discrete wavelet
transform can be implemented efficiently by Mallat’s fast algorithm [15]. The Mallat
algorithm is in fact a classical scheme known in the signal processing community as
a two-channel subband coder (see page 1 Wavelets and Filter Banks, by Strang and
Nguyen [16]).
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The Mallat algorithm is used for both wavelet decomposition and reconstruction. The
algorithm has a pyramidal structure with the underlying operations being convolution
and decimation. For a discrete signal s = (s0, s1, · · · , sN−1)(N = 2L, L ∈ Z+).
For convenience, denote it as cm,0 = sm, m = 0, 1, · · · , N − 1. Then Haar wavelet
transform can be implemented by the following iteration:
For l = 1, 2, · · · , L and m = 0, 1, · · · , N/(l + 1)⎧⎪⎪⎨⎪⎪⎩

cm,l =
1∑

k=0
hkck+2m,l−1

dm,l =
1∑

k=0
gkck+2m,l−1

(2)

where the h0, h1 is low pass filter and g0, g1 is high pass filter:

h0 = h1 =
√

2,
g0 =

√
2, g1 = −

√
2

They are orthogonal:
gk = (−1)kh1−k (3)

and the obtained {c.,L, d.,L, d.,L−1, · · · , d.,1} is the discrete Haar wavelet transform of
the signal.

An image is a 2-D signal and this 2-D space can be regarded as a separable space,
which means that the wavelet transform on an image can be implemented using a 1-D
wavelet transform. On the same level, it can be implemented on all the rows and then
on all the columns.

In this paper, we only keep the low-frequency part of the Haar wavelet transform
of the image. This part can represent the spatial information of the MHI very well
in a lower dimension. The high-frequency information is more useful for representing
edges, which is not really important in our system, and it is more susceptible to noise.
Actually, this part can be implemented very quickly based on some specific algorithms.
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(a) Original video (b) MHI (c) Wavelet transform (d) Histogram

Fig. 2. Motion feature of the action. (a) Original video (b)MHI (c) Haar wavelet transform of
MHI (d) Histogram of MHI.

Figure 2 shows an example of a handwaving action. (a) is the original video clip,
(b) is the MHI, (c) is the Haar wavelet transform of MHI where the red square is low
frequency part and (d) is Histogram of the MHI.



Motion Feature Combination for Human Action Recognition in Video 157

4.4 Combining Features

The two feature vectors histogram of MHI and Haar wavelet transform of MHI are
combined in the simplest way. The combined feature vector is built by concatenating
these two feature vectors into a higher dimensional vector. In this way, the temporal
and spatial information of the MHI are integrated into one feature vector while the
dimension of the combined feature vector has lower dimension in comparison with
MHI itself.

4.5 Support Vector Machine

SVM is a state-of-the-art classification technique with large application in a range of
fields including text classification, face recognition and genomic classification, where
patterns can be described by a finite set of characteristic features. We use the SVM for
the classification component of our system. This is due to SVM being a classifier that
has excellent performance on many real-world classification problems. Using arbitrary
positive definite kernels provides a possibility to extend the SVM capability to handle
high dimensional feature spaces.

Originally, the SVM is a binary classifier in a higher dimensional space where a max-
imal separating hyperplane is constructed. Two parallel hyperplanes are constructed on
each side of the hyperplane that separates the data. The separating hyperplane is the hy-
perplane that maximizes the distance between the two parallel hyperplanes. If we have
a training dataset

{
xi|xi ∈ Rd

}
, and its binary labels are denoted as {yi|yi = ±1}, the

norm-2 soft-margin SVM can be represented as a constrained optimization problem

min
w,b,ξ

1
2
||w||2 + C

∑
i

ξi (4)

s.t.

〈xi,w〉 + b ≥ 1 − ξi, yi = 1,
〈xi,w〉 + b ≤ −1 + ξi, yi = −1,

ξi ≥ 0,

where C is a penalty parameter and ξi are slack variables. The vector w ∈ Rd points
perpendicular to the separating hyperplane. Adding the offset parameter b allows us to
increase the margin. It can be converted by applying Lagrange multipliers into its Wolfe
dual problem and can be solved by quadratic programming methods.

The primal optimum solution for weight vector w can be represented as

w =
∑

i

αiyixi. (5)

where 0 ≤ αi ≤ C. Obviously, w can be expressed as a linear combination of the
support vectors for which αi > 0. For a testing feature vector x, the decision function
η and its estimated label h are:

h (x) = sign (η (x)) = sign (〈w,x〉 + b) . (6)
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The original optimal hyperplane algorithm was a linear classifier. However, many
researchers have created non-linear classifiers by applying a kernel trick [17] and thus
the SVM can be generalized to the case where the decision function is a non-linear
function of the data.

Multiclass SVMs are usually implemented by combining several two-class SVMs.
In each binary SVM, only one class is labelled as ”1” and the others labelled as ”-1”.
The one-versus-all method uses a winner-takes-all strategy.

If there are M classes, then the SVM method will construct M binary classifiers
by learning. During the testing process, each classifier will get a confidence coefficient
{ηj (x) |j = 1, 2, · · · , M} and the class k with the maximum confidence coefficient will
be assigned to this sample x.

h (x) = k, if ηk (x) = maxM
j=1 (ηj (x)) . (7)

Our human action recognition problem here is a multi-class classification case. If,
for example, we have six classes, then six SVM classifiers are trained based on motion
features such as the MHI obtained from human action video clips in a training dataset.
For each SVM training, one class is labeled as ”1” and the rest classes are labeled as
”-1”. After the training, each SVM classifier is represented by two parameters w and b.
These parameters will be stored in the internal memory of the FPGA. In the recognition
process, one inner product between obtained MHI and w will be calculated and added
to b for each SVM classifier. Then the final predicted label for the action video will go
to the class with the maximum one in the computed six values.

5 Experimental Results

5.1 Dataset

For the evaluation, we use a challenging human action recognition database, recorded
by Christian Schuldt [4]. It contains six types of human actions (walking, jogging, run-
ning, boxing, hand waving and hand clapping) performed several times by 25 subjects
in four different scenarios: outdoors (s1), outdoors with scale variation (s2), outdoors
with different clothes (s3) and indoors (s4).

This database contains 2391 sequences. All sequences were taken over homoge-
neous backgrounds with a static camera with 25Hz frame rate. The sequences were
down-sampled to the spatial resolution of 160×120 pixels. For all the action sequences,
the length of the sequences are vary and the average is four seconds (about 100 frames).
To the best of our knowledge, this is the largest video database with sequences of hu-
man actions taken over different scenarios. All sequences were divided with respect to
the subjects into a training set (8 persons), a validation set (8 persons) and a test set
(9 persons). In our experiment, the classifiers were trained on the training set while
classification results were obtained on the test set.

Figure 3 showed six types of human actions in the database: walking, jogging, run-
ning, boxing, handclapping and handwaving. Row (a) are the original videos, (b) and
(c) are the associated MHI and Histogram of MHI features.
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Fig. 3. Six types of human actions in the database: walking, jogging, running, boxing, hand-
clapping and handwaving. Row (a) are the original videos, (b) and (c) are associate MHI and
Histogram of MHI features.

5.2 Experimental Setup

Our experiments were carried out on all four different scenarios: outdoors, outdoors
with scale variation, outdoors with different clothes and indoors. In the same manner
as paper [5], each sequence is treated individually during the training and classification
process. In all the following experiments, the parameters were chosen to be the same.
The threshold in differential frame computing was chosen as 25 and τ was chosen as
constant 255 for MHI construction.

A MHI was calculated from each action sequence with about 100 frames. The size of
each MHI is 160×120 = 19200, which is same width as that of the frames in the videos.
The values of MHI are in the interval of [0, 255]. Then each MHI was decomposed using
a 2-D Haar wavelet transform to L = 3 levels. Thus the size of the low frequency part of
the Haar wavelet transform of MHI is 20×15 = 300. Since the length of the histogram
of MHI is 255, the length of combined feature vector is 555.

In our system, each SVM was trained based on features obtained from human ac-
tion video clips in a training dataset. These video clips have their own labels such as
”walking,” ”running” and so on. In classification, we actually get a six-class classifica-
tion problem. The SVM training can be implemented using programs freely available
on the web, such as SV M light [18]. Finally, we obtained several SVM classifiers with
associated parameters.

In the recognition process, feature vectors will be extracted from the input human
action video sample. Then all the SVM classifiers obtained from the training process
will classify the extracted feature vector. Finally, the class with maximum confidence
coefficient within these SVM classifiers will be assigned to this sample.

5.3 Experiment Results

Tables 1 show the classification confusion matrix based on the method proposed in
paper [5].The confusion matrices show the motion label (vertical) versus the classifi-
cation results (horizontal). Each cell (i, j) in the table shows the percentage of class
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Table 1. Ke’s confusion matrix, trace=377.8

Walk Jog Run Box Clap Wave

Walk 80.6 11.1 8.3 0.0 0.0 0.0
Jog 30.6 36.2 33.3 0.0 0.0 0.0

Run 2.8 25.0 44.4 0.0 27.8 0.0
Box 0.0 2.8 11.1 69.4 11.1 5.6
Clap 0.0 0.0 5.6 36.1 55.6 2.8

Wave 0.0 5.6 0.0 2.8 0.0 91.7

Table 2. MHI S’s confusion matrix, trace=377.7

Walk Jog Run Box Clap Wave

Walk 56.9 18.1 22.2 0.0 0.0 2.8
Jog 45.1 29.9 22.9 1.4 0.0 0.7

Run 34.7 27.8 36.1 0.0 0.0 1.4
Box 0.0 0.0 0.0 89.5 2.1 8.4
Clap 0.0 0.0 0.0 5.6 88.9 5.6

Wave 0.0 0.0 0.0 12.5 11.1 76.4

Table 3. MHI hist’s confusion matrix, trace=328.6

Walk Jog Run Box Clap Wave

Walk 62.5 32.6 0.0 1.4 1.4 2.1
Jog 12.5 58.3 25.0 0.0 0.0 4.2

Run 0.7 18.8 77.1 0.0 0.0 3.5
Box 4.9 2.8 0.7 17.5 61.5 12.6
Clap 4.9 2.1 0.7 11.1 75.0 6.3

Wave 5.6 3.5 6.9 20.1 25.7 38.2

i action being recognized as class j. Then trace of the matrices show the percentage
of the correctly recognized action, while the remaining cells show the percentage of
misclassification.

In order to study the performance of the Haar wavelet transform of MHI and his-
togram of MHI, we used linear SVM classifier on them separately and compared their
performance. Table 2 and table 3 shows the confusion matrix obtained for Haar wavelet
transform and histogram of MHI separately. From these two tables, it can be seen that
Haar wavelet transform of MHI obtains a similar performance to Ke’s method. This fea-
ture did very well in distinguishing the last three groups. On the other hand, histogram
of MHI did not do well on overall performance. But it has the power to distinguish the
first three groups. That demonstrates that they keep different information from MHI.
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Table 4. MHI S&MHI hist’s confusion matrix, trace=425.6

Walk Jog Run Box Clap Wave

Walk 68.8 11.1 17.4 0.0 0.0 2.8
Jog 36.8 36.1 25.0 1.4 0.0 0.7

Run 14.6 20.1 63.9 0.0 0.0 1.4
Box 0.0 0.0 0.0 89.5 2.1 8.4
Clap 0.0 0.0 0.0 4.9 89.6 5.6

Wave 0.0 0.0 0.0 11.1 11.1 77.8

Table 4 show the confusion matrix obtained from our system in which combined
feature were used. From this table, we can see that the overall performance has got a
significant improvement on Ke’s method based on volumetric features. Good perfor-
mance is achieved in distinguishing all of the six actions in the dataset.

It should be mentioned here that in paper [4], the performance is slightly better where
trace=430.3. But our system was trained in the same way as [5] to detect a single in-
stance of each action within arbitrary sequences while Schuldt’s system has the easier
task of classifying each complete sequence (containing several repetitions of same ac-
tion) into one of six classes.

Fig. 4. Comparison results on the correctly classified rate based on different methods: Ke’s
method; SVM on MHI; SVM on MMHI; SVM on the concatenated feature (VEC2) of MHI and
MMHI and SVM 2K on MHI and MMHI;SVM on histogram of MHI; SVM on the combined
feature of MHI and histogram of MHI; SVM on combined feature of Haar wavelet transform of
MHI and histogram of MHI.

We also compared the correctly classified rate based on our system with other pre-
vious results in the figure 4. The first one is the Ke’s method, the second, third and
sixth are SVM based on individual features MHI, MMHI and Histogram of MHI re-
spectively. The fourth one is SVM based on combined feature from MHI and MMHI.
The fifth is using SVM 2K classifier on both MHI and MMHI. The seventh is SVM on
combined feature from MHI and its histogram. The last one is the results SVM based
on Haar wavelet transform of MHI and histogram of MHI. This last result achieves the
best overall performance of approximately 71% correct classification.
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6 Extension of the Idea

In the previous sections, we combined two different types features extracted from same
MHI feature and achieved significant improvement on the performance. The reason is
that these two features extract different characteristics of the motion feature. In fact,
this idea can be further extended to combine different types of features extracted from
different motion features. In [19], we combined the histogram of MHI with Motion
Geometric Distribution (MGD) feature vector extracted from the Motion History His-
togram. The main common point between MGD feature and Haar wavelet transform
feature is that both of them represented spatial information of the motion features. Ta-
ble 5 showed the experiment results on the same dataset. It achieves the best overall
performance of above 80% correct classification.

Table 5. MGD & Hist. of MHI’s confusion matrix, trace=481.9

Walk Jog Run Box Clap Wave

Walk 66.0 31.3 0.0 0.0 2.1 0.7
Jog 13.9 62.5 21.5 1.4 0.0 0.7

Run 2.1 16.7 79.9 0.0 0.0 1.4
Box 0.0 0.0 0.0 88.8 2.8 8.4
Clap 0.0 0.0 0.0 3.5 93.1 3.5

Wave 0.0 0.0 0.0 1.4 6.9 91.7

7 Conclusions

In this paper, we proposed a system for fast human action recognition. Potential appli-
cations include security systems, man-machine communication, and ubiquitous vision
systems. The proposed method does not rely on accurate tracking as many other works
do, since many tracking algorithms incur a prohibitive computational cost for the sys-
tem. Our system is based on simple features in order to achieve high-speed recognition,
particularly in real-time embedded vision applications.

In comparison with local SVM methods by Schuldt [4], our feature vector is much
easier to obtain because we don’t need to find interest points in each frame. We also
don’t need a validation dataset for parameter tuning.

In comparison with Meng’s [11] [12] methods, we use a Haar wavelet transform and
histogram methods to build a new feature vector from the MHI representation. This
new feature vector contains the important information of the MHI and also has a lower
dimension. Experimental results demonstrate that these techniques made a significant
improvement on the human action recognition performance compared to other methods.

If the learning part of the system is conducted off-line, this system has great potential
for implementation in small, embedded computing devices, typically FPGA orDSP based
systems, which can be embedded in the application and give real-time performance.
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Abstract. We formulate and develop computational strategies for Optimal Factor
Analysis (OFA), a linear dimension reduction technique designed to learn
low-dimensional representations that optimize discrimination based on the nearest-
neighbor classifier. The methods are applied to content-based image categorization
and retrieval using a representation of images by histograms of their spectral com-
ponents. Various experiments are carried out and the results are compared to those
that have been previously reported for some other image retrieval systems.

Keywords: Linear dimension reduction, image classification, content-based im-
age retrieval, optimal factor analysis.

1 Introduction

We develop Optimal Factor Analysis (OFA), a linear dimension-reduction technique
that optimizes the discriminative ability of the nearest-neighbor classifier for a given
data classification problem. We apply the technique to content-based categorization
and retrieval of images using a representation based on the statistics of their spectral
components. This investigation is motivated by the need to develop intelligent and scal-
able systems capable of indexing and retrieving images from large and complex image
libraries in an automated manner. Classical approaches based on “expert” annotations
are not viable for large data sets.

For the image categorization problem, we shall assume that a training database of
labeled images representing various different classes of objects is available and the goal
is to learn optimal low-dimensional features or “signatures” to assign a query image to
the correct class. In content-based image retrieval, one of the objectives is to find the
top  matches in a database to a query image, where the number  is prescribed by the
user. In the proposed approach, categorization and retrieval are closed related. We use
a categorization algorithm to organize an entire database according to features learned
from a training set. Given a query image I , we first rank the classes using the nearest
neighbor classifier applied to the learned low-dimensional features and then retrieve
images sequentially starting from the top ranked class.

The problem of classifying images in a database into semantic categories arises in
many different levels of generality. For example, the problem can be as broad as separat-
ing images that depict an indoor or outdoor scene, or it may involve much more specific
categorization into classes such as cars, people, and flowers. As the breadth of the se-
mantic categories may vary considerably, the development of general strategies poses
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significant challenges. This motivated us to approach the problem in two stages. First,
we extract “stable” features that are able to capture information about the structure and
semantic content of an image. Subsequently, we employ learning techniques to iden-
tify the factors that have the highest discriminating power for a particular classification
problem.

The histogram of an image is useful, however, it tends to have limited discriminating
power because it contains little information about the finer structure of an image. To
remedy the situation, we use histograms of multiple spectral components, as they retain
a significant amount of information about texture patterns and edges. The statistics of
spectral components have been studied in the past primarily in the context of texture
analysis and synthesis. In [11], it is demonstrated that marginal distributions of spec-
tral components suffice to characterize homogeneous textures; other studies include [5]
and [9]. To provide some preliminary evidence of the suitability of spectral histogram
(SH) features, in Section 3, we report the results of a retrieval experiment on a database
of 1,000 images representing 10 different semantic categories. The relevance of an im-
age is determined by the nearest-neighbor criterion applied to a number of SH-features
combined into a single feature vector. Even without a learning component, we already
observe a performance comparable to those exhibited by some existing retrieval systems.

Optimal Factor Analysis will be employed with a twofold purpose: (a) to identify
and split off the most discriminating factors of the SH-features; (b) to lower the dimen-
sion of the representation to reduce complexity and improve computational efficiency.
A preliminary form of OFA was introduced in [3] as Splitting Factor Analysis. Given a
(small) positive integer k, the goal of OFA is to find an “optimal” k-dimensional linear
reduction of the original image features for a particular categorization or indexing prob-
lem. Image categorization and retrieval will be based on the nearest neighbor classifier
applied to the reduced features, as explained in more detail below. We employ OFA in
the context of SH-features, but it will be presented in a more general feature learning
framework.

Image retrieval strategies employing a variety of methods have been investigated in
[8], [1], [6], [7], [10], [2]. Further references can be found in these papers. Some of
these proposals employ a relevance feedback mechanism in an attempt to progressively
improve the quality of retrieval. Although not discussed in this paper, a feedback com-
ponent can be incorporated to the proposed strategy by gradually adding to the training
set images for which the quality of retrieval was low.

The paper is organized as follows. In Section 2, we describe the histogram features
that will be used to characterize image content. Preliminary retrieval experiments using
these features are described in Section 3. Section 4 contains a discussion of Optimal
Factor Analysis, and Sections 6 and 7 are devoted to applications of the machine learn-
ing methodology to image categorization and retrieval. Section 8 closes the discussion
with a summary and a few remarks on refinements of the proposed methods.

2 Spectral Histogram Features

Let I be a gray-scale image and F a convolution filter. The spectral component IF of I
associated with F is the image IF obtained through the convolution of I and F , which



166 Y. Zhu, W. Mio, and X. Liu

is given at pixel location p by

IF (p) = F ∗ I(p) =
∑

q

F (q) I(p − q), (1)

where the summation is taken over the pixels of F . For a color image, we apply the filter
to its R,G,B channels. For a given set of bins, which will be assumed fixed throughout
the paper, we let h(I, F ) denote the corresponding histogram of IF . We refer to h(I, F )
as the spectral histogram (SH) feature of the image I associated with the filter F . If the
number of bins is b, the SH-feature h(I, F ) can be viewed as a vector in R

b. Figure 1
illustrates the process of obtaining SH-features. Frames (a) and (b) show a color image
and its red channel response to a Laplacian filter, respectively. The last panel shows the
11-bin histogram of the filtered image.

(a) (b) (c)

Fig. 1. (a) An image; (b) the red-channel response to a Laplacian filter; (c) the associated 11-bin
histogram

If F = {F1, . . . , Fr} is a bank of filters, the SH-features associated with the family
F is the collection h(I, Fi), 1 � i � r, combined into the single m-dimensional vector

h(I, F) = (h(I, F1), . . . , h(I, Fr)), (2)

where m = rb. For a color image, m = 3rb. Banks of filters used in this paper consist
of Gabor filters of different widths and orientations, gradient filters, and Laplacian of
Gaussians.

3 SH-Features for Image Retrieval

To offer some preliminary evidence that image representation by SH-features may be
attractive for retrieval, we perform a simple retrieval experiment using the Euclidean
distance between histograms. Even without a learning component, the results are al-
ready comparable to those obtained with some existing systems. To compare the results
objectively with those reported in [8] for SIMPLIcity and color histograms, we use
the same subset of the Corel data set consisting of 10 semantic categories, each with
100 images. We refer to this data set as Corel-1000. The categories are as follows: (1)
African people and villages; (2) beach scenes; (3) buildings; (4) buses; (5) dinosaurs;
(6) elephants; (7) flowers; (8) horses; (9) mountains and glaciers; (10) food. Three sam-
ples from each category are shown in Figure 2. The examples are emblematic of the
large variations observed even within a semantic category.
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Fig. 2. Samples from Corel-1000: three images from 10 classes, each consisting of 100 images

We utilize a bank of 5 filters and apply each filter to the R, G, and B channels of the
images to obtain a total of 15 histograms per image. Each histogram consists of 11 bins
so that the SH-feature vector h(I, F) has dimension 165. For a query image I from the
database, we calculate the Euclidean distances between h(I, F) and h(J, F), for every J
in the database, and rank the images according to increasing distances. For comparison
purposes, as in [8], we calculate the weighted precision and the average rank, which are
defined as follows. The retrieval precision for the top  returns, is n	/, where n	 is the
number of correct matches. The weighted precision for a query image I is

p(I) =
1

100

100∑
	=1

n	


. (3)

For a query image I , rank order all 1,000 images in the database, as described above.
The average rank r(I) is the mean value of the ranks of all images that belong to the
same class as I . Figures 3(a) and 3(b) show the mean values

p̄i =
1

100

∑
I∈Ci

p(I) and r̄i =
1

100

∑
I∈Ci

r(I), (4)

of the weighted precision and average rank within each class Ci, 1 � i � 10. High mean
precision and low mean rank reflect high retrieval performance. The results obtained
with SH-features are compared to those reported in [8] for SIMPLIcity and for color
histograms with the earth mover’s distance (EMD) investigated in [6]. In Figure 3, color
histograms 1 and 2 refer to EMD applied to histograms with a different number of bins.

4 Optimal Factor Analysis

We develop Optimal Factor Analysis (OFA), a linear feature learning technique whose
goal is to find a linear mapping that reduces the dimension of data representation while
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Fig. 3. (a) Plots of p̄i and r̄i, 1 � i � 10. The methods are labeled as: (�) spectral histogram; (∗)
SIMPLIcity; (◦) color histogram 1; (+) color histogram 2.

optimizing the discriminative ability of the nearest neighbor classifier, as measured by
its performance on training data. We assume that the training set is formed by feature
vectors in Euclidean space R

m and consists of labeled representatives from P different
classes of objects. For each integer c, 1 ≤ c ≤ P , we denote the vectors in class c by
xc,1, . . . , xc,tc .

If A : R
m → R

k is a linear transformation, the quantity

ρ(xc,i; A) =
minc �=b,j ‖Axc,i − Axb,j‖p

minj �=i ‖Axc,i − Axc,j‖p + ε
(5)

provides a measurement of how well the nearest-neighbor classifier applied to the re-
duced data identifies the element represented by xc,i as belonging to class c. Here, ε > 0
is a small number used to prevent vanishing denominators and p > 0 is an exponent that
can be adjusted to regularize ρ in different ways. In this paper, we set p = 2. A large
value of ρ(xc,i; A) indicates that, after the transformation A is applied, xc,i lies much
closer to its own class than to other classes. A value ρ(xc,i; A) ≈ 1 indicates a transition
between correct and incorrect decisions by the nearest neighbor classifier. The function
ρ is similar to that used in the development of Optimal Component Analysis (OCA)
[4]. Note that expression (5) can be easily modified to reflect the performance of the
K-nearest neighbor classifier.

The idea is to choose a transformation A that maximizes the average value of
ρ(xc,i; A) over the training set. To control bias with respect to particular classes, we
scale ρ(xc,i; A) with a sigmoid of the form

σ(x) =
1

1 + e−βx
(6)

before taking the average. We identify linear maps A : R
m → R

k with k × m matrices,
in the usual way, and define a performance function F : R

k×m → R by

F (A) =
1
P

P∑
c=1

(
1
tc

tc∑
i=1

σ (ρ(xc,i; A) − 1)

)
. (7)
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Scaling an entire dataset does not change decisions based on the nearest-neighbor
classifier. This is reflected in the fact that F is (nearly) scale invariant; that is, F (A) ≈
F (rA), for r > 0. Equality does not hold exactly because ε > 0, but in practice, ε is
negligible. Thus, we fix the scale and optimize F over matrices A of unit Frobenius
norm. Let

S =
{
A ∈ R

k×m : ‖A‖2 = tr (AAT ) = 1
}

(8)

be the unit sphere in R
k×m. The goal of OFA is to maximize the performance function

F over S; that is, to find
Â = argmax

A∈S

F (A). (9)

Due to the existence of multiple local maxima of F , the numerical estimation of Â is
carried out with a stochastic gradient search. We remark that this optimization problem
is simpler than the corresponding problem for OCA because the OFA search is per-
formed over a sphere instead of a Grassmann manifold. While OCA only considers di-
mension reduction via orthogonal projections to k-dimensional subspaces of R

m, OFA
allows more general linear mappings. Thus, OFA may produce k-dimensional features
more effective for classification with significant computational gains.

5 Estimating Â

Our computational approach to the estimation of Â is based on simulated annealing and
is similar to the strategy adopted by Liu et al. for OCA [4]. We begin with the details of
a deterministic gradient search for maxima of F over the unit sphere S and then outline
the routine changes needed to carry out a stochastic search using simulated annealing
with a Metropolis-Hastings acceptance-rejection criterion.

5.1 Deterministic Gradient

Given A ∈ S, to estimate the gradient vector field ∇SF on S associated with the per-
formance function F , we first calculate ∇F (A), the gradient of F viewed as a function
on R

k×m. Since F is nearly scale invariant,

∇F (A) ≈ ∇SF (A), (10)

as the component of ∇F (A) normal to the sphere is almost negligible. The numerical
estimation of the left-hand side of (10) only involves standard procedures. For 1 � i �
k, 1 � j � m, let Eij be the k × m matrix whose (i, j) entry is 1 and all others vanish.
The partial derivative of F in the direction Eij is estimated as

∂ijF (A) ≈ F (A + δEij) − F (A)
δ

,

with δ > 0 small. Then, ∇F (A) can be approximated by

∇̄F (A) =
∑
i,j

∂ijF (A)Eij . (11)
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The vector ∇̄F (A) is nearly tangential to S at A. We enforce full tangentiality and
obtain a more accurate estimation of ∇SF (A) by subtracting the component normal to
the sphere S, as follows. For any A ∈ S, the outer unit normal vector to S at A in R

k×m

is A itself. Thus, we adopt the estimate

∇SF (A) ≈ ∇̄F (A) −
〈
∇̄F (A), A

〉
A. (12)

A deterministic gradient search for (local) maxima of F on S can be carried out with
the following algorithm.

Algorithm: Deterministic Gradient Search

1. Choose a threshold value ε > 0 and a step size δ > 0.
2. Initialize the search with some A ∈ S.
3. Calculate ∇SF (A) using Eqns. 11 and 12.
4. If ‖∇SF (A)‖ < ε, set Â = A and stop. Else, update A according to

A = A cos (δ ‖∇SF (A)‖) +
∇SF (A)

‖∇SF (A)‖ sin (δ ‖∇SF (A)‖) .

5. Go to Step 3.

Remarks:

(a) The update of A described in Step 4 of the algorithm has the effect of displacing A
by δ ‖∇SF (A)‖ units of length along the great circle of S through A in the direction
∇SF (A).

(b) We often initialize the search with a linear mapping obtained from classical dimen-
sion reduction techniques such as principal component analysis or linear discrimi-
nant analysis.

5.2 Stochastic Search

Our next goal is to add a stochastic component to the deterministic gradient field ∇SF
on S. To simplify the calculation, instead of considering stochastic processes on the
sphere, we first add a random component to ∇SF (A) as a vector in R

k×m and then
project it to the tangent space to S at A. We adopt the notation ΠA : R

m×k → TA S for
the orthogonal projection of R

m×k onto the tangent space of S at A, which is given by
ΠA(X) = X − 〈X, A〉A.

Algorithm: Stochastic Gradient Search

1. Choose A ∈ S, a cooling ratio γ > 1, an initial temperature T0 > 0, a step size
δ > 0, and a positive integer N to control the number of iterations.

2. Set t = 0 and initialize the search with At = A ∈ S.
3. Calculate ∇SF (At) using Eqns. 11 and 12.
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4. Generate samples wij(t) ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ k, from the standard normal
distribution and construct the tangent vector

f(t) = δ ∇SF (At) +
√

2δTt ΠAt

⎛⎝∑
i,j

wij(t)Eij

⎞⎠ .

5. Moving along an arc of length ‖f(t)‖ on the great circle through At in the direction
of f(t), define a candidate B ∈ S for update by

B = At cos(‖f(t)‖) +
f(t)

‖f(t)‖ sin(‖f(t)‖) .

6. Calculate F (B), F (At), and the increment dF = F (B) − F (At).
7. Accept B with probability min{edF/Tt , 1}. If B is accepted, set At+1 = B. Else,

set At+1 = At.
8. If t < N , set Tt+1 = Tt/γ and t = t + 1, and go to Step 3. Else, let Â = At and

stop.

5.3 An Alternative Interpretation of OFA

Unlike linear dimension-reduction methods that rely only on orthogonal projection onto
a subspace of the original feature space, OFA allows general linear mappings to a k-
dimensional feature space. In this section, we show that if we are willing to consider
metrics other than the Euclidean metric, then dimension reduction and subsequent data
classification with OFA may be viewed as obtained from an orthogonal projection onto
a subspace of the original feature space. If A is a rank r matrix, take a singular value
decomposition

A = UΣV T , (13)

where U and V are orthogonal matrices of dimensions k and m, respectively, and Σ is
a k × m matrix whose r × r northwest quadrant is diagonal with positive eigenvalues
and whose remaining entries are all zero. Let H be the r-dimensional subspace of R

m

spanned by the first r columns of V and denote the orthogonal projection of a vector
x ∈ R

m onto H by xH . Then,

Ax · Ay = yT (AT A)x = yT Kx = yT
HKxH , (14)

for any x, y ∈ R
m, where K = AT A is a positive semi-definite symmetric matrix. In

particular,
‖Ax − Ay‖2 = (xH − yH)T K(xH − yH). (15)

This means that the Euclidean distance between feature vectors in the reduced space
R

k can be interpreted as the distance between the projected vectors xH and yH in the
original feature space with respect to the new metric

d(xH , yH) =
√

(xH − yH)T K(xH − yH) . (16)
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Note that the subspace H is spanned by the eigenvectors of K associated with its non-
zero eigenvalues, so that (16) does define a metric on H . Thus, OFA may be viewed
as a technique to learn a subspace H of R

m for orthogonal dimension reduction and a
positive definite quadratic form on H that are optimal for categorization based on the
nearest-neighbor classifier.

6 Image Categorization

We report the results of several image categorization experiments with the Corel-1000
data set described in Section 3. In each experiment, we placed an equal number of
images from each class in the training set and used the remaining ones as query images
to be indexed by the nearest-neighbor classifier applied to a reduced feature learned with
OFA. Initially, an image is represented by an SH-feature vector h(I, F) of dimension
165 obtained from the 11-bin histograms associated with 5 filters applied to the R, G,
and B channels. OFA was used to reduce the dimension to k = 9. Table 1 shows the
categorization performance: T denotes the total number of images in the training set and
categorization performance refers to the rate of correct indexing using all 1, 000 − T
images outside the training set as queries.

Table 1. Results of categorization experiments with the Corel-1000 data set. T is the number of
training images and the dimension of the reduced feature space is 9.

T Categorization Performance
600 85.5%
400 84.5%
200 71.7%

7 Image Retrieval

We now use the reduced features learned with OFA to retrieve images from the database.
We begin with the remark that the reduced representation was optimized to categorize
query images with the nearest neighbor classifier, but not necessarily to rank matches to
a query image correctly according to distances in feature space. Thus, in contrast with
the retrieval strategy based solely on distances adopted, for example, in [8] and [2], we
propose to exploit the strengths of the image categorization method in a more essential
way.

Let A : Rm → R
k be the optimal linear dimension-reduction map learned with OFA.

If I is an image and h(I, F) ∈ R
m is the associated SH-feature vector, we let x denote

its projection to R
k; that is,

x = Ah(I, F). (17)

If there are P classes of images, for each 1 � i � P , let xi be the reduced feature
vector of the training image in class i closest to x and let

di(I) = ‖x − xi‖ (18)

be the distance from I to class i in reduced feature space.
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Given a query image I and a positive integer , the goal is to retrieve a ranked list
of  images from the database. We assume that all images in the database have been
indexed using the representation learned with OFA. Given I , rank the classes according
to increasing values of the distances di(I). We retrieve images as follows: select as
many images as possible from the first class; once that class is exhausted, we proceed to
the second and iterate the procedure until  images are obtained. Within each class, the
images are retrieved and ranked according to their Euclidean distances to I as measured
in the reduced feature space.

7.1 Experimental Results

We report the results of retrieval experiments with the Corel-1000 dataset. To make
objective comparisons with other systems, we only use query images that are part of
the database. Since each class contains 100 images, the maximum possible number of
matches to a query image is 100, where a match is an image that belongs to the same
class. We first compare retrieval results using OFA learning with those obtained with
SIMPLIcity and spectral histograms, as described in Section 3. We calculated the mean
values p̄i and r̄I of the weighted precision and rank as defined in (4). The plots shown
in Figure 4 show a significant improvement in retrieval performance with a learning
component. OFA was used with 400 training images (OFA-400).

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Category ID

A
ve

ra
ge

 P
re

ci
si

on

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

Category ID

A
ve

ra
ge

 R
an

k

Fig. 4. (a) Plots of p̄i and r̄i, 1 � i � 10. The methods are labeled as: (�) spectral histogram; (∗)
SIMPLIcity; (	) OFA-400.

We further quantify retrieval performance, as follows. For an image I and a positive
integer , let m	 be the number of matching images among the top  returns. Let

p	(I) =
m	(I)


and r	(I) =

m	(I)
100

(19)

be the precision and recall rates for  returns for image I . The average precision and
average recall for the top  returns are defined as

p	 =
∑

I p	(I)
1000

and r	 =
∑

I r	(I)
1000

, (20)
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Fig. 5. Corel-1000: average-precision × average-recall plots for 200, 400 and 600 training
images

Table 2. Retrieval results for OFA with T training images. Average retrieval precision (p�) and
average recall (r�) for the top � matches.

T = 600

� 10 20 40 70 100 200 500

p� 0.925 0.921 0.916 0.909 0.883 0.461 0.192

r� 0.093 0.184 0.366 0.636 0.883 0.922 0.962

T = 400

� 10 20 40 70 100 200 500

p� 0.889 0.882 0.875 0.861 0.825 0.437 0.188

r� 0.089 0.176 0.345 0.603 0.825 0.876 0.938

T = 200

� 10 20 40 70 100 200 500

p� 0.731 0.690 0.660 0.649 0.620 0.361 0.176

r� 0.073 0.138 0.264 0.454 0.620 0.722 0.881

respectively. Here, the sum is taken over all 1,000 images in the database. Note that, for
a perfect retrieval system, p	 = 1, for 1 �  � 100, gradually decaying to p1000 = 0.1
as  increases. Similarly, r	 = 1, for  ≥ 100, and decays with  to r1 = 0.01.

Table 2 shows several values of the average precision and the average recall based
on a 9-dimensional representation learned with T training images. The full average-
precision × average-recall plots are shown in Figure 5. Figure 6 shows the top 10 returns
for a few images in the database in an experiment with 400 training images. In each
group, the first image is the query image, which is also the top return.

8 Summary and Discussion

We employed a representation of images by the histograms of their spectral components
for content-based image categorization and retrieval. A feature learning technique, re-
ferred to as Optimal Factor Analysis, was developed to reduce the dimension of the
representation and optimize the discriminative ability of the nearest-neighbor classifier.
Several experiments were carried out and the results demonstrate a significant improve-
ment in retrieval performance over a number of existing retrieval systems. Refinements
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(a)

(b)

(c)

(d)

(e)

Fig. 6. Examples of top-10 returns. In each group, the first image is the query, which is also the
top return.

of the methods will be investigated in future work to obtain sparse representations and
to incorporate kernel techniques to cope with nonlinearity in data geometry. Compu-
tational strategies for faster retrieval as well as a modified version of the OFA cost
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function that allows a more efficient estimation of the gradient also will be investigated
in future work.
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Abstract. An integral component of face processing research is estimation of
head orientation from face images. Head pose estimation bears importance in
several applications in biometrics, human-computer interfaces, driver monitoring
systems, video conferencing and social interaction enhancement programs. A re-
cent trend in head pose estimation research has been the use of manifold learning
techniques to capture the underlying geometry of the images. Face images with
varying pose angles can be considered to be lying on a smooth low-dimensional
manifold in high-dimensional image feature space. However, with real-world im-
ages, manifold learning techniques often fail because of their reliance on a geo-
metric structure, which is often distorted due to noise, illumination changes and
other variations. Also, when there are face images of multiple individuals with
varying pose angles, manifold learning techniques often do not give accurate re-
sults. In this work, we introduce the formulation of a novel framework for super-
vised manifold learning called Biased Manifold Embedding to obtain improved
performance in person-independent head pose estimation. While this framework
goes beyond pose estimation, and can be applied to all regression applications,
this work is focused on formulating the framework and validating its performace
using the Isomap technique for head pose estimation. The work was carried out
on face images from the FacePix database, which contains 181 face images each
of 30 individuals with pose angle variations at a granularity of 1 ◦. A Generalized
Regression Neural Network (GRNN) was used to learn the non-linear mapping,
and linear multi-variate regression was adopted on the low-dimensional space to
obtain the pose angle. Results showed that the approach holds promise, with es-
timation errors substantially lower than similar efforts in the past using manifold
learning techniques for head pose estimation.

Keywords: Head pose estimation, Manifold learning, Supervised learning, Face
processing.

1 Introduction

As human-centered computing applications grow each day, human face analysis has
grown in its importance as a problem studied by several research communities. The
estimation of head pose angle from face images is a significant sub-problem in several
applications like 3D face modeling, gaze direction detection, driver monitoring safety
systems, etc. Further, realistic solutions to the problem of face recognition have to be
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able to handle significant head pose variations, thereby leading to the gain in importance
of the automatic estimation of the orientation of the head relative to the camera-centered
co-ordinate system. While coarse head pose estimation has been successful to a large
extent [2], accurate person-independent pose estimation, which is very crucial for ap-
plications like 3D face modeling, is still being worked on.

Current literature [4], [8], [11] separates the existing methods for head pose esti-
mation into distinct categories:

– Shape-based geometric analysis, where head pose is discerned from geometric in-
formation like the configuration of facial landmarks.

– Model-based methods, where non-linear parametric models are derived before us-
ing a classifier like a neural network (Eg. Active Appearance Models (AAMs)).

– Appearance-based methods, where the pose estimation problem is viewed as a pat-
tern classification problem on image feature spaces.

– Template matching approaches, which are largely based on nearest neighbor clas-
sification against texture templates/signatures.

– Dimensionality reduction based approaches, where linear/non-linear embedding of
the face images is used for pose estimation.

To overcome data redundancy and obtain compact representations of face images, ear-
lier work [3], [8], [4] suggests to consider the high-dimensional face image data as a
set of geometrically related points lying on a smooth manifold in the high-dimensional
feature space.

Different poses of the head, although captured in high-dimensional image feature
spaces, can be visualized as data points lying on a low-dimensional manifold in the
high-dimensional space. Raytchev et al [8] stated that the dimension of this manifold
is equivalent to the number of degrees of freedom in the movement during data capture.
For example, images of the human face with different angles of pose rotation (yaw, tilt
and roll) can intrinsically be conceptualized as a 3D manifold in image feature space.
This conceptualization resulted in a host of dimensionality reduction techniques that
are based on the relative geometry of the data points in high-dimensional space. This is
the idea that underlies the family of non-linear dimensionality reduction techniques un-
der the umbrella of manifold learning, like Isomap, Locally Linear Embedding (LLE),
Laplacian Eigenmaps, Local Tangent Space Alignment (LTSA), etc, which have be-
come popular in recent times.

In prior work in this domain, [8] and [5] employed a straight-forward approach to
learn the non-linear mapping onto the low-dimensional space through manifold learn-
ing, and estimated the pose angle using a pose parameter map. In the work carried out so
far, the pose information of the given face images is ignored while computing the em-
bedding. In this light, we propose a novel improvement to traditional manifold learning
techniques, called the Biased Manifold Embedding approach, which provides a bias
to the manifold-based embedding process, using pose information from the given face
image data. While the proposed Biased Manifold Embedding method is illustrated us-
ing Isomap in this paper, it can easily be extended to other manifold learning techniques
with minor adaptations. As broader impact, the work proposed here is a framework for a
supervised approach to manifold-based non-linear dimensionality reduction techniques
across all regression problems.



Supervised Isomap for Person-Independent Head Pose Estimation 179

We discuss the background with a brief description of the Isomap algorithm, fol-
lowed by related work and an insight into the significance of our work in Section 2.
Section 3 details the mathematical formulation of the proposed Biased Manifold Em-
bedding method. The experimental setup and the methodology of our experiments are
briefed in Section 4. The results of the experiments are discussed in Section 5. We
then discuss the advantages and limitations of the approach in the concluding section in
Section 6, and provide future directions to this work.

2 Background

2.1 Non-linear Dimensionality Reduction Using Isomap

Finding low-dimensional representations of high-dimensional data is a common prob-
lem in science and engineering. High-dimensional observations are prevalent in all
fields: images, spectral data, instrument readings, etc. Techniques like Principal Com-
ponent Analysis (PCA) are recognized as linear dimensionality reduction techniques,
because of the linear projection matrix obtained from the eigen vectors of the covari-
ance matrix, while techniques like Multi-Dimensional Scaling (MDS) are grouped un-
der non-linear dimensionality reduction techniques. However, MDS uses the L2 (Eu-
clidean) distance between data points in the high-dimensional space to capture their
similarities. If the data points were to lie on a manifold in the high-dimensional space,
Euclidean distances do not capture the geometric relationship between the data points.
In such cases, it is beneficial to consider the geodesic (along the surface on which the
data points lie) distances between the data points to obtain a more truthful representa-
tion of the data.

To capture the global geometry of the data points, Tanenbaum et al [10] proposed
Isomap to compute an isometric low-dimensional embedding of a given set of high-
dimensional data points (See Algorithm 1).

While Isomap captures the global geometry of the data points in the high-dimensional
space, the disadvantage of this family of manifold learning techniques is the lack of
a projection matrix to embed out-of-sample data points after the training phase. This
makes the method more suited for data visualization, rather than classification prob-
lems. However, these techniques capture the relative geometry of data points,and this
enthuses researchers to adopt this methodology to solve problems like head pose estima-
tion, where the data is known to possess geometric relationships in a high-dimensional
space. Figure 1 shows the visualization results of using Isomap to embed face images
onto 2 dimensions. Faces of 10 individuals with 11 pose angles (-75◦ to +75◦ in incre-
ments of 15) were used to perform this embedding. The feature space considered here
was the space of grayscale pixel intensities. As evident from this figure, the embedding
of the face images reflects an intrinsic ordering on the corresponding pose angles. While
this indicates the sensitivity of this approach to face images with varying pose angles,
the clutter of images on the trajectory suggests that fine estimation of pose angle still
remains a challenging problem.
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Algorithm 1. Isomap algorithm.
Step 1: Construct Neighborhood Graph
Determine the neighbors of a point on the manifold M . The neighbors are identified as the
data points within a e-radius of a given point, or one among the k nearest neighbors in terms
of Euclidean distance from the given point. The neighborhood of each point is represented as
a weighted graph G over the data points, with each edge characterized by the distance dx(i, j)
between the pair of neighboring points.

Step 2: Compute Shortest Paths
Estimate the geodesic distances dM(i, j) between all pairs of points on the manifold M by com-
puting their shortest path distance in the graph G . This is done using the Floyd’s or Djkstraa’s
algorithm. For example:

dM(xi,x j) = mindM(xi,x j),dM(xi,xk)+dM(xk,x j)

Step 3: Derive Low-dimensional Embedding
Apply classical MDS to the geodesic distances matrix DM = dM(i, j), deriving an embedding
of the data in a low-dimensional Euclidean space Y that best preserves the estimated intrinsic
geometry of the manifold.

(a) Isomap embedding with 10 neighbors. (b) Isomap embedding with 50 neighbors.

Fig. 1. Embedding of face images with varying poses onto 2 dimensions using Isomap with dif-
ferent neighbor parameters

2.2 Related Work

Over the last few years since the arrival of manifold learning techniques, a reasonable
amount of work has been done using manifold-based dimensionality reduction tech-
niques for head pose estimation. Chen et al [3] considered multi-view face images
as lying on a manifold in high-dimensional feature space. However, they compared
the effectiveness of Kernel Discriminant Analysis against Support Vector Machines
in learning the manifold gradient direction in the high-dimensional feature space, and
did not adopt manifold learning for non-linear dimensionality reduction. Raytchev et
al [8] studied the effectiveness of Isomap for head pose estimation against other view
representation approaches like the Linear Subspace model and Locality Preserving Pro-
jections (LPP). While their work established the possible gain in accuracy through use
of manifold learning techniques, the face images used by them were sampled at pose
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angle increments of 15◦, and relied on the robustness of the captured mapping and
interpolation to obtain the precise pose angle estimate. Hu et al [5] developed a uni-
fied embedding approach for multiple individuals, where the embedding obtained from
Isomap for a single individual was parametrically modeled as an ellipse. The ellipses
for different individuals were subsequently normalized through scale, translation and
rotation based transformations to obtain a unified embedding. In more recent work, Fu
and Huang [4] presented an appearance-based strategy for head pose estimation using a
supervised form of Graph Embedding, which internally used the idea of Locally Linear
Embedding (LLE). This work mainly focussed on obtaining a linearization of manifold
learning techniques to treat out-of-sample data points.

There has been recent work by [9] and [12] to obtain a supervised approach to
manifold learning techniques. However, their approaches are strictly oriented towards
classification problems, and do not exploit the label information as possible for regres-
sion problems like head pose estimation.

2.3 Proposed Approach

While manifold learning techniques like Isomap capture the global geometrical rela-
tionship between data points in the high-dimensional image feature space, they do not
use the pose label information of the training data samples. Unlike class labels in clas-
sification problems, pose information can be viewed as an ordered single-dimensional
label with an established distance metric. This can provide valuable input to the embed-
ding process.

In this work, we propose a biased manifold-based embedding for head pose esti-
mation. We use the given pose information to bias the non-linear embedding to obtain
accurate pose angle estimation. The significance of our contribution is realized in the
fact that the proposed Biased Manifold Embedding method, although validated in this
work with Isomap, can be extended to other manifold learning techniques with minor
modifications, and in general, can be applied to all regression problems that use man-
ifold learning methods. In addition, while most current approaches use face images
sampled with pose angles at increments of 10-15◦ [8], we use the FacePix database [7]
that includes images of faces taken at a wide range of precisely measured pose angles
with a readily available granularity of 1◦. This reinforces the validity of our experiments
with the proposed approach.

3 Biased Manifold Embedding

In the Biased Manifold Embedding method, we propose to use the pose angle informa-
tion of the training data samples to obtain a more meaningful embedding with a view to
solve the problem of pose estimation. The fundamental idea of our approach is that face
images with nearer pose angles must be nearer to each other in the low-dimensional
embedding, and images with farther pose angles are placed farther, irrespective of the
identity of the individual. We achieve this with a modification to the computation of
the geodesic distance matrix. Since a distance metric can easily be defined on the pose
angle values, the problem of finding closeness of pose angles is straight-forward.
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The mathematical formulation of the Biased Manifold Embedding method is given
below. We would like the ideal modified geodesic distance between a pair of data points
to be of the form:

D̃(i, j) = f (P(i, j))⊗ D(i, j)

where D(i, j) ( = dM in Algorithm 1) is the geodesic distance between two data points
xi and x j, D̃(i, j) is the modified biased geodesic distance, P(i, j) is the pose distance
between xi and x j, f is any function of the pose distance, and ⊗ is a binary operator. If ⊗
was chosen as the multiplication operation, the function f would be chosen as inversely
proportional to the pose distance, P(i, j). In a more general perspective, the function f
could be picked from the family of reciprocal functions ( f ∈ FR) based on the needs of
an application. In this work, we choose the function as:

f (P(i, j)) =
1

maxm,nP(m,n)− P(i, j)

This function could be replaced by an inverse exponential or quadratic function of the
pose distance. In order to ensure that the biased geodesic distance values are well-
separated for different pose distances, we multiply this quantity by a function of the
pose distance:

D̃(i, j) =
α(P(i, j))

maxm,nP(m,n)− P(i, j)
∗ D(i, j)

where the function a is directly proportional to the pose distance, P(i, j), and is defined
in our work as:

α(P(i, j)) = β ∗ |P(i, j)|

where β is a constant of proportionality, and allows parametric variation for perfor-
mance tuning. In our work, we have used the pose distance as the one-dimensional
distance i.e. P(i, j) = |Pi−P j|, where Pk is the pose angle of xk. In summary, the biased
geodesic distance between a pair of points can be given by:

D̃(i, j) =

{ α(P(i, j))
maxm,nP(m,n)−P(i, j) ∗ D(i, j) P(i, j) �= 0,

0 P(i, j) = 0.
(1)

Classical MDS is applied on this biased geodesic distance matrix to obtain the embed-
ding. The proposed modification impacts only the computation of the geodesic distance
matrix, and hence, can easily be extended to other manifold-based dimensionality re-
duction techniques that use the geodesic distance.

Figure 2 shows the results of using Biased Isomap to embed the same facial images
used in Figure 1 onto 2 dimensions. The embedded images establish the tendency of
the method to elicit person-independent representations of the pose angles of the given
facial images. As expected from the formulation of the method (see Figure 2), the face
images of all individuals with the same pose angle have merged onto the same data
point in 2 dimensions. This renders an embedding that is more conducive to determine
the pose angle from the face images.
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(a) Biased Isomap embedding with 10
neighbors

(b) Biased Isomap embedding with 20
neighbors

Fig. 2. Biased Isomap Embedding of face images with varying poses onto 2 dimensions. Note in
2(b) that all the face images with the same pose angle have merged onto the same 2D point.

4 Experimental Setup and Methodology

The proposed Biased Isomap Embedding approach was compared against the tradi-
tional Isomap method for non-linear dimensionality reduction in the head pose angle
estimation process. We used the FacePix face database [7] (see Figure 3) built at the
Center for Cognitive Ubiquitous Computing (CUbiC), which has face images with pre-
cisely measured pose variation. In this work, we consider a set of 2184 face images,
consisting of 24 individuals with pose angles varying from -90◦ to +90◦ in increments
of 2◦. The images were subsampled to 32 x 32 resolution, and different feature spaces
of the images were considered for the experiments. The results presented here include
the grayscale pixel intensity feature space and the Laplacian of Gaussian (LoG) trans-
formed image feature space (see Figure 4). The LoG transform was used since pose
variation in face images is a result of geometric transformation, and texture information
may not be really useful for the pose estimation problem. This was also reflected in
preliminary experiments conducted with Gabor filters and Fourier-Mellin transformed
images. The images were subsequently rasterized and normalized.

Non-linear dimensionality reduction techniques like manifold learning do not pro-
vide a projection matrix to handle test data points. While different approaches have
been used by earlier researchers to capture the mapping from the high-dimensional fea-
ture space to the low-dimensional embedding, we adopted a Generalized Regression
Neural Network (GRNN) with Radial Basis Functions to learn the non-linear mapping.
This approach has been adopted earlier by Zhao et al [13]. Additionally, the param-
eters involved in training the network (just the spread of the Radial Basis Function)
are minimal, thereby facilitating better evaluation of the proposed method. Once the
low-dimensional embedding was obtained, linear multi-variate regression was used to
obtain the pose angle of the test image.

The proposed Biased Isomap Embedding method was compared with the traditional
Isomap approach using resubstitution and 8-fold cross-validation models. In the resub-
stitution model, 100 data points were randomly chosen from the training sample for
the testing phase. The error in estimation of the pose angle was used as the metric for
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Fig. 3. The data capture setup for FacePix

(a) Grayscale image (b) Laplacian of Gaus-
sian (LoG) tranformed
image

Fig. 4. Image feature spaces used for the experiments

performance evaluation. In the 8-fold cross-validation model, face images of 3 individ-
uals were used for the testing phase in each fold, while all the remaining images were
used in the training phase. In addition to these experiments, the variation in accuracy of
the proposed method with the embedding dimension and the number of neighbors for
the embedding was studied.

5 Results and Discussion

The results for the resubstitution model are presented in Table 1. The improved per-
formance of the Biased Isomap Embedding method for head pose estimation is unan-
imously reflected in the significant reduction in error values across the image feature
spaces. However, validation using the resubstitution model is preliminary since test
samples are picked from the training sample set itself. For more robust validation, we
implemented 8-fold cross-validation over the images from 24 individuals. The results
of these experiments are shown in Table 2. The results with the cross-validation model
corroborate our claim of the performance gain. Both of these experiments were carried
out with an embedding dimension of 8, with a choice of 50 neighbors for the embed-
ding. The pose angle estimate error is consistently under 4◦, which is a substantial
improvement over earlier work [8].
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Table 1. Results using the resubstitution model

Feature Space Error using Error using
traditional Biased

Isomap Isomap

Grayscale 11.39 1.98
Laplacian of Gaussian 8.80 2.31

Table 2. Results using the 8-fold cross-validation model

Feature Space Error using Error using
traditional Biased

Isomap Isomap

Grayscale 10.55 3.68
Laplacian of Gaussian 9.10 3.38

Table 3. Analysis of performance with varying dimensions of embedding

Dimension of Error using Error using
Embedding traditional Biased

Isomap Isomap

100 10.41 5.02
50 10.86 5.04
20 11.35 5.04
8 12.96 5.07
5 12.57 5.05
3 16.21 5.66

In addition, the performance of the Biased Manifold Embedding was analyzed with
varying dimensions of embedding, and choice of the number of neighbors used for
embedding. Table 3 captures the results for different embedding dimensions with the
number of neighbors fixed at 50. Table 4 captures the results for varying number of
neighbors for the embedding with the embedding dimension fixed at 8. Grayscale pixel
intensities of the face images were used for these independent experiments.

As evident from the results, the significant reduction in the error of estimation of pose
angle substantiates the effectivness of the proposed approach. In addition, as the results
in Tables 2, 3 and 4 illustrate, the Biased Manifold Embedding method is robust to vari-
ations in feature spaces, dimensions of embedding and choice of number of neighbors.
While the traditional Isomap embedding has fluctuating results for these parameters,
the range of error values obtained for the Biased Manifold Embedding method across
these parameter changes suggests the high stability of the method, thanks to the biasing
of the embedding.

A summary of results from related approaches is presented in Table 5. Note that
these results are extracted from earlier work which have had different experimental
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Table 4. Analysis of performance with varying number of neighbors for embedding

Number of Error using Error using
Neighbors traditional Biased

Isomap Isomap

30 11.56 5.10
50 12.96 5.06

100 13.83 5.03
200 12.59 5.06
500 14.36 5.07

Table 5. Summary of head pose estimation results from related approaches in recent years

Reference Method Best result: Notes
Error/Accuracy

[3] Fisher Manifold Learning About 3 ◦ Face images only in
[−10 ◦,10 ◦] interval

[6] Kernel PCA + 97% Face images only in
Support Vector Machines 10 ◦ intervals. This was framed

as a classification problem of
identifying the pose angle as

one of these intervals.
[8] Isomap About 11 ◦ Face images sampled

at 15 ◦ increments
[8] LPP About 15 ◦ Face images sampled

at 15 ◦ increments
[4] LEA About 2 ◦ Best results so far

Fig. 5. Analysis of the average error in pose estimation for each of the views between
[−90 ◦,+90 ◦]

design criteria, and may not be compared directly. This table has been presented just to
provide an idea of the results have been obtained so far.

For a better understanding of the results, we analyzed how the errors in the pose
estimation process were spread out on the interval [−90 ◦,+90 ◦]. Figure 5 shows the
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head pose estimation error in each of the views in this pose angle interval. While we
expected to see a better performance at the frontal view, this was not very evident in any
of the three approaches. We also hoped to identify particular regions of pose angle views
of face images where the framework consistently performs relatively poor. However,
these plots do not provide any coherent information on identifying such views of face
images.

6 Conclusions

We have proposed the Biased Manifold Embedding method, a novel supervised ap-
proach to manifold learning techniques for regression problems. The proposed method
was validated for accurate person-independent head pose estimation. The use of pose
information in the manifold embedding process improved the performance of the pose
estimation process significantly. The pose angle estimates obtained using this method
are accurate, and can be relied upon with an error margin of 3-4◦. Our experiments also
demonstrated that the method is robust to variations in feature spaces, dimensionality of
embedding and the choice of the number of neighbors for the embedding. The proposed
method can easily be extended from the current Isomap implementation to cover the en-
velop of other manifold learning techniques, and can be developed as a framework for
biased manifold learning to cater to all regression problems at large.

6.1 Limitations and Future Work

As mentioned earlier, a significant drawback of manifold learning techniques is the lack
of a projection matrix to treat new data points. While we used the GRNN to learn the
non-linear mapping in this work, there have been other approaches adopted by var-
ious researchers. Bengio et al [1] proposed a mathematical formulation focussed to
overcome this problem. We plan to use these approaches to support the validity of our
approach. Besides, we intend to extend the Biased Manifold Embedding implementa-
tion to LLE and Laplacian Eigenmaps to establish it as a framework for non-linear di-
mensionality reduction in regression applications. On a lesser significant note, another
limitation of the current approach is that the number of neighbors chosen to obtain the
embeddding has to be more than the number of individuals in the face images. This
is because different individuals with the same pose angle are assigned a zero distance
value in the biased geodesic distance matrix. We plan to modify our algorithm to over-
come this limitation. In addition, the function of pose distance used to bias the geodesic
distance matrix can be varied to study the applicability of different reciprocal functions
for pose estimation.
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Abstract. We present a complete real-time model-based tracking system for
piecewise-planar objects which combines template-based and feature-based ap-
proaches. Our contributions are an extension to the ESM algorithm used for
template-based tracking and the formulation of a feature-based tracking approach,
which is specifically tailored for use in a real-time setting. In order to cope with
highly dynamic scenarios, such as illumination changes, partial occlusions and
fast object movement, the system adaptively switches between template-based
tracking, feature-based tracking and a global initialization phase. Our tracking
system achieves real-time performance by applying a coarse-to-fine optimization
approach and includes means to detect a loss of track.

Keywords: Real-Time Vision, Model-Based Object Tracking, Feature-based
Tracking, Template-based Tracking.

1 Introduction

Tracking lays the foundation for many application areas, including Augmented Real-
ity, visual servoing and vision-based industrial applications. Consequently, there is a
huge amount of related publications. The methods used for real-time 3D-tracking can
be roughly divided into four categories: Line-based tracking, template-based tracking,
feature-based tracking and hybrid approaches.

Line-based tracking requires a line model of the tracked object. The pose is deter-
mined by matching a projection of the line model to the lines extracted in the image.
One of the first publications in this field was [5]. Recently a real-time line tracking
system which uses multiple-hypothesis line tracking was proposed in [16]. The main
disadvantage of line tracking is that it has severe problems with background clutter
and image blurring so that in practice it cannot be applied in the applications we are
targeting.

Template-based tracking fits better into our scenarios. It uses a reference template
of the object and tracks it using image differences. This works nicely for well-textured
objects and small interframe displacements. One of the first publications on template-
based tracking [12] was using the optical flow in order to recover the translations in the
image plane of the tracked objects. In order to improve the efficiency of the tracking
and to deal with more complex objects and/or camera motions, other approaches were
proposed [7,1]. In [2] the authors compare these approaches and show that they all
have an equivalent convergence rate and frequency up to a first order approximation
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with some being more efficient than others. A more recently suggested approach is the
Efficient Second Order Minimization (ESM) algorithm [4], whose main contribution
consists in finding a parametrization and an algorithm, which allow to achieve second-
order convergence at the computational cost and consequently the speed of first-order
methods.

Similarly to template-based tracking feature-based approaches also require a well-
textured object. They work by extracting salient image regions from a reference image
and matching them to another image. Each single point in the reference image is com-
pared with other points belonging in a search region in the other image. The one that
gives the best similarity measure score is considered as the corresponding one. A com-
mon choice for feature extraction is the Harris corner detector [8]. Features can then be
matched using normalized cross correlation (NCC) or some other similarity measure
[17]. Two recent feature-matching approaches are SIFT [11] and Randomized Trees
[10]. Both perform equally well in terms of accuracy. However, despite a recently pro-
posed optimization of SIFT called SURF [3], SIFT has a lower runtime performance
than the Randomized Trees, which exhibit a fast feature matching thanks to an of-
fline learning step. In comparison to template-based methods, feature-based approaches
can deal with bigger interframe displacements and can even be used for wide-baseline
matching if we consider the whole image as the search region. However, wide-baseline
approaches are in general too slow for real-time applications. Therefore they are mostly
used for initialization rather than tracking. A full tracking system using only features
was proposed in [15]. It relies on registered reference images of the object and performs
feature matching between reference image and current image as well as between pre-
vious image and current image to estimate the pose of the object. However, the frame
rate is not very high because of their complex cost function. Moreover image blurring
poses a problem for feature extraction.

Hybrid tracking approaches combine two or more of the aforementioned approaches.
Some recent related publications include [14], which combines template-based tracking
and line-based tracking. In [15] the authors combine line-based tracking and feature-
based tracking. Even though these algorithms perform well, the line-based tracking
only improves the results for a few cases and might corrupt the result in the case of
background clutter. In [13] the authors use a template-based method for tracking small
patches on the object, which are then used for a point-based pose estimation. Since
this approach uses a template-based method for tracking it cannot deal with fast object
motion.

Our proposed system combines template-based and feature-based tracking
approaches. The template-based tracking is used as the default tracking since it han-
dles small interframe displacements, image blur and linear illumination changes well.
In our system we adopt an extended version of the ESM algorithm, due to its high
convergence rate and accuracy. For larger interframe displacements, which cannot be
handled by the template-based algorithm, we use a feature-based approach making use
of Harris points and NCC. We decided against using both feature-based and template-
based tracking at the same time in a combined cost function, since features do not
add any precision for small displacements and for big displacements the gradient di-
rection given by ESM is usually erroneous. A combined approach also increases the
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computational burden, which not only slows down the tracker but also increases the
interframe displacement. For the (re-)initialization we use Randomized Trees, because
of their good runtime performance.

The rest of the paper is structured as follows: Section 2 introduces the theoretical
background used in our system and section 3 describes our system design. In section
4 we present some simulations with ground-truth and some real-world experimental
results. We conclude with section 5.

2 Theoretical Background

Every (4 × 4) matrix T defining a 3D rigid body transformation is an element of the
special Euclidean group SE(3). Moreover the Lie-Algebra se(3) is linked to SE(3)
through the exponential map. The base elements of se(3) can be chosen as follows:

A1 =
[
0 bx

0 0

]
A4 =

[
[bx]× 0

0 0

]

A2 =
[
0 by

0 0

]
A5 =

[
[by]× 0

0 0

]

A3 =
[
0 bz

0 0

]
A6 =

[
[bz]× 0

0 0

]
with bx = [1 0 0]�, by = [0 1 0]� and bz = [0 0 1]�. The matrices A1, A2, A3
generate the translations and A4, A5, A6 generate the rotations. Consequently, we can
parameterize a transformation matrix:

T =
[
R t
0 1

]
∈ SE(3)

where R is the rotation and t is the translation, using the parameter vector that con-
sists of the coefficients for each base element. Hence given a coefficient vector x =
[x1, x2, ..., x6]� the corresponding transformation matrix T is obtained as:

T(x) = exp(
6∑

i=1

xiAi) (1)

In our system we also make heavy use of the relation between the movement of a
plane in 3D and its movement in the image, since we suppose that every object can
be considered as piecewise planar. As shown in [9] every plane movement induces a
homography. Let the plane be π = [n d]� with normal n and distance d from the
camera. Then the homography describing the transformation of the imaged plane is
given by:

H(T) = K
(
R − tn�

d

)
K−1 (2)

where K are the intrinsic parameters of the camera. The basic cost function used for
template-based tracking is defined as follows: Let I∗ be the reference image and I
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Fig. 1. Two of the textured models tested for tracking

the current image. Further let p be the pixel coordinates of the pixels in the reference
image and T̂ an initial pose estimate for the current image. Our goal is to estimate
an incremental pose update T(x) with x the parameter vector encoding rotation and
translation. Let w be the warping function. The cost function is then given as:

f(x) =
∑
p

[
I
(
w

(
H

(
T̂T(x)

))
(p)

)
− I∗(p)

]2
(3)

Due to the virtues of the parametrization it is possible to only evaluate a Jacobian, which
depends on the reference image and the current image, and still achieve second order
convergence [4].

3 Proposed System

An overview of the proposed system as a finite state machine (FSM) is given in Figure
5. The system starts with an initialization phase, which will be described in section 3.2.
It then uses the template-based tracking algorithm to track the object as explained in
section 3.3. In the event that template-based tracking fails the feature-based tracking,
as described in section 3.4, is used. If the feature-based tracker is unable to recover the
pose within a certain number of attempts the initialization is invoked again. Section 3.5
describes the transitions of the FSM and the reasoning behind them.

3.1 Required Information

In our system we use a textured 3D model of the object (see figure 1). This model can
either be created manually or semi-automatically with commercially available products.
One point to note is that it is advisable to use the same camera for texturing the model
and for tracking, because this minimizes difficulties due to different image quality and
image formation conditions. For the initialization registered images of the object, called
keyframes, are required. They can be created directly from the textured model by ren-
dering it from different views.
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Fig. 2. Comparison of templates extracted from the video (left) and from the textured model
(right). Note the low quality, the bad viewing angle and the presence of background texture in the
templates extracted from the video.

3.2 Initialization

Initialization is performed using Randomized Trees. The Randomized Trees algorithm
requires a reference image of the object in order to learn the appearance of the feature
points. When initializing, features are extracted from the current image and matched
to the features extracted in the keyframe. The pose can then be estimated from the 3D
object points and corresponding 2D feature points in the current image.

Since the tracker is using a textured model of the object the accuracy of the initial
pose estimation is not very critical. If on the other hand the reference templates used
for tracking were extracted from the current image, the precision of the initialization
procedure would be a major issue, because the quality of the tracking result depends
directly on the quality of the templates used for tracking. Hence we decided to directly
use the templates taken from the textured model in our system.

3.3 Template-Based Tracking

We use the ESM algorithm for template-based tracking. The object is tracked using
this method until a loss of track is detected, in which case the feature-based tracker is
invoked.

Reference Patch Extraction. In order to perform the tracking, the textures of the
patches to be tracked are required. These textures will be called reference patches. One
possibility to obtain them is to extract them from the current image. In order to do this,
the pose of the object as seen in the image is required. This information is given either
through the initialization or through the tracking itself, in the case that patches which
had previously been occluded by the object become visible. This is however problematic
since the initialization and the tracking accuracy are not always high enough to properly
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extract the patch. Therefore the extracted patches often contain a some background
texture. Even if the pose is accurate it is possible that the patch is partially occluded,
so that the reference template will also contain this occlusion. This will eventually lead
to a loss of track. Another problem is that new reference patches are often extracted
under oblique viewing angles, which means that the reference patch textures will be not
as informative as if they would have been seen parallel to the image plane. For these
reasons we abandoned this approach and chose to use a textured model of the object to
be tracked. Figure 2 shows a comparison of templates extracted from the video stream
and from the textured model.

For each patch the object is rendered so that the patch is oriented parallel to the
image plane. It is also important to ensure that the relative sizes of the object patches
are reflected in the size of the rendered patches, since the number of pixels in a patch is
directly proportional to its importance during tracking.

Since the pose parameters used to render the patches are known, the reference
patches can be directly extracted from the rendered image. After this for every patch
k the following information is available: The reference patch I∗

k , the pose T̃k under
which it was extracted, the patch normal nk and its distance to the camera dk. These
reference patches are then reduced a few times in size by a factor of two to create a
stack of reference patches at different scales, which are used to speed up the tracking in
a coarse-to-fine approach.

Visibility Test. Attempting to track patches which are not visible will lead to erro-
neous results. Hence it is necessary to ascertain the visibility of every patch. This test
is performed by rendering the model with OpenGL and using the occlusion query ex-
tension to test which patches are visible and which are occluded. The visibility test is
performed for each frame using the pose estimated in the previous frame. Thanks to the
occlusion query extension the visibility test can be performed very fast, so that it does
not interfere with the tracking performance.

The Extended ESM Algorithm. We extended the formulation of the ESM algorithm
as given in section 2 (see figure 3). This extension is required since in the original for-
mulation it is implicitly assumed that all reference patches come from the same image,
i.e. they were extracted in the same coordinate system. However, this is not possible
when using the rendered patches, since each patch is seen under a different pose. For
instance the front and back face of a cube can not be seen at the same time. Hence it
would be impossible to track all the patches in the same coordinate system. This would
mean that each patch had to be tracked independently without considering the con-
straints imposed by the object geometry. To overcome this problem the pose T̃k under
which the reference patch was extracted has to be incorporated into the algorithm. This
leads to the modified cost function:

f(x) =
∑

k

∑
pk

[
I
(
w

(
H

(
T̂T(x)T̃−1

k

))
(pk)

)
− I∗(pk)

]2
(4)

In order to speed up the optimization, we start at the highest scale level (lowest resolu-
tion) and optimize the cost function on this level until convergence is achieved or until
the maximum number of iterations has been exceeded. If the optimization converges
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The extended ESM algorithm

Input: I, I∗
k, T̂, T̃k

Output: T̂

Jacobians:
Jk
I∗ = ∇pI∗

k(p)|p=pk

Jk
I = ∇pI (w(H)) (p)|p=pk

Jw = ∇H(w(H))(p)|H=I

JK = ∇H(KHK−1)|H=I

Jk
T = ∇TH(T̂T̃−1

k )−1H(T̂TT̃−1
k )|T=I

Jx = ∇xT(x)|x=0

iter = 0
while (iter < max iter)

for each patch k
Compute Ik = I(w(H(T̂T̃−1

k )))
for every pixel pk

Compute Jk = (Jk
I + Jk

I∗)JwJKJk
TJx

Compute yk = Ik − I∗
k

Append Jk to J and yk to y
x = −2J+y
if (‖x‖ < ε) then exit
T(x) = exp(

∑6
i=1 xiAi)

T̂ = T̂T(x)
iter = iter+1

Fig. 3. The extended ESM algorithm

before the maximum number of iterations has been reached it is restarted on the next
scale level with the pose estimated on the previous level. This is continued until the
lowest scale level (highest resolution) is reached or the maximum number of iterations
is exceeded.

Loss of Track. Determining when the tracker lost the object is important in order to
switch to the feature-based tracking algorithm. In our system this is accomplished by
computing the normalized cross correlation (NCC) between the reference patch I∗

k and
the current patch Ik after the end of the optimization for all visible patches. The NCC
between two patches is defined as:

NCC(I∗
k , Ik) =

∑
pk

(I∗
k (pk) − µ∗

k)(Ik(pk) − µk)
N2

kσ∗
kσk

(5)

where Nk is the number of pixels of each patch, µ∗
k and µk are the mean pixel intensities

and σ∗
k and σk their standard deviations.

If the NCC of a patch falls below a certain threshold, it is excluded from the tracking.
If all the patches fall below the threshold the feature-based tracker is invoked.
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Fig. 4. Transfomations between reference patch and current patch

3.4 Feature-Based Tracking

In the event that the template-based tracker fails, the feature-based tracker is invoked.
For our feature-based tracking approach we extract Harris corner points on the same
reference patches used for the template-based tracking and subsequently match them
to the current patch (i.e. the patch as seen in the current image) using NCC. Because
NCC is not scale and rotation invariant a method had to be devised to ensure that the
two patches will be seen under almost identical poses.

This is achieved as follows: Since the pose T̃k under which the reference patch k
and hence the feature points were extracted is known, it is possible to determine the
homography by which the current image has to be warped to obtain the reference patch.
However since the object pose in the current image is not known, the pose T̂ recovered
in the previous frame is used as an approximation (see figure 4). Hence the current im-

age has to be warped with the homography
(
H(T̂T̃−1

k )
)−1

. Since the warping uses the

pose from the previous frame the warped patch will not look exactly like the reference
patch, but supposing reasonable constraints on the maximum speed of the object, it is
safe to assume that the deformations will only be minor so that the NCC can still be
used as a similarity measure. The feature points are then extracted in the warped patch
in a window around the previous position of the patch. This reduces the computation
time compared to extracting features in the whole image.

Let the matched points in the reference image and the current image be pk,i and p′
k,i

respectively. First outliers are removed using RANSAC [6]. Then the pose is estimated
by minimizing the cost function:

f(x) =
∑

k

∑
i

‖w
(
H

(
T̂T(x)T̃−1

k

))
(pk,i) − p′

k,i‖2 (6)

The parametrization is identical to that used in the template-based algorithm. Since
RANSAC was already applied to remove the outliers there is no need to use a robust
cost function, so a simple least-squares approach suffices.

Using the warped patches for the matching is advantageous for several reasons. First
it allows the use of NCC for matching instead of a more expensive affine-invariant
matching algorithm. Secondly it reduces the computational time for feature extraction,
because it is only necessary to extract Harris points on the warped patch and not on the
whole image. A further advantage is that this approach removes matching ambiguities in
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Fig. 5. Overview of the proposed tracking system

the case that multiple patches have the same texture, since by considering the previous
pose only the correct patch will be used for the matching.

3.5 Finite State Machine

To decide which algorithm to use for a given frame we designed a finite state machine
(see figure 5). The system starts out in the initialization phase and stays in this phase
until the the object is found in the image (transition (1)). Once the object has been found
we switch to the template-based tracking phase (transition (2)). The reason for starting
with template-based tracking rather than with feature-based tracking is the higher accu-
racy and the higher frame rate, since it is possible to use a coarse-to-fine optimization
approach. As long as there is at least one patch left that has a NCC higher than the
threshold the template-based tracker will be used (transition (3)).

When the NCC score of all patches falls below a certain threshold the system
switches to the feature-based tracker (transition (4)), because otherwise the tracking
would diverge. An important issue is choosing a good threshold for the NCC. We found
that a value between 0.5 and 0.7 gives the best results. For lower values the system
looses track, while for higher values the feature-based approach is used most of the
time, even though the template-based tracker would be faster.

Even in the feature-based tracking phase the NCC between the reference patches and
the current patches is computed. If there are enough feature matches to determine the
pose, the system goes back to template-based tracking (transition (5)) unless there are
no patches with a NCC above the threshold. In this case the system continues to use
features (transition (6)) until at least one patch has a NCC above the threshold. If the
pose cannot be recovered in the current frame the feature-based tracker is given another
chance on the next few frames (transition (6)). The reason for this is that the object
might just have been blurred in the current frame because of too fast motion, which
makes both template-based tracking and feature extraction difficult. Often, however,
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(a) Sequence 1

(b) Sequence 2

Fig. 6. Ground-truth motion in synthetic sequences (solid = x-axis, dotted = y-axis, dashed =
z-axis)

(a) Extended ESM

(b) Features

(c) Proposed Approach

Fig. 7. Absolute error on synthetic sequence 1

the object slows down after a few frames, so that the feature-based tracker can find it
again. If the object still cannot be found after a certain number of frames have been seen
the initialization is invoked again (transition (7)).

4 Experiments

To evaluate the validity of our approach we performed several experiments on synthetic
data with ground-truth and real data.

The frame rate of our system is in the range between 25 fps and 40 fps on a 1.66 GHz
Intel Core-Duo CPU with 1 GB of memory. The exact value depends on a multitude
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(a) Extended ESM

(b) Features

(c) Proposed Approach

Fig. 8. Absolute error on synthetic sequence 2

of factors including the size of the reference patches, the number of scale levels, the
number of feature points and the desired accuracy.

The synthetic experiments consisted of creating an animation with a textured 3D
model and comparing the recovered pose parameters to the actual ones.

Figure 6 shows the ground-truth motion of one sequence with 170 and one sequence
with 200 frames. There are big rotations, fast object movement and big scale changes
present in both sequences. The range of the rotations is 120 degrees and the range of
the translations is around 40 cm. Figure 7 and figure 8 show the absolute translation
and rotation errors for the first sequence and second sequence respectively. All methods
have a very small error of normally less than 3 degrees for the rotations and 4 mm for
the translations. In the first sequence the extended ESM algorithm looses track at frame
162 (see figure 7(a)) due to fast object translation along the x-axis (see figure 6(a)). The
feature-based algorithm already looses track much earlier at frame 31 (see figure 7(b)),
because it cannot find any feature matches when the object is seen at an oblique angle.
In the second sequence the feature-based algorithm performs better than the extended
ESM algorithm (see figure 8). However neither algorithm can track the whole sequence.
Our tracking approach on the other hand successfully tracks both sequences entirely,
because it changes the tracking algorithm used at the right moment. We obtained similar
results on all synthetic sequences we simulated. Since there are no blurring, illumination
changes or noise in the synthetic sequences it is not possible to show how our system
deals with these conditions. Therefore we also performed many real-world experiments
using different objects. Figure 9 shows some experiments on real sequences made with
a tea box and a candy box under varying tracking conditions. The images show how
our system deals with partial occlusions, illumination changes, changes in scale and
severely oblique viewing angles. This shows that the proposed algorithm is able to deal
with dynamic scenarios and solve the major limitations of classical tracking algorithms
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Fig. 9. Results on real data under different tracking conditions
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such as partial occlusions, illumination changes and fast object movement. We can also
see that it is possible to robustly overlay virtual objects in order to perform Augmented
Reality.

5 Conclusions

We presented a tracking system which intelligently combines template-based and
feature-based tracking. The contributions are the extension of the ESM algorithm, the
formulation of the feature-based tracking and the FSM for deciding which algorithm to
use for the current frame. The system has been tested on real-world sequences as well
as on simulations and performs at high frame rates on a standard PC.

Compared to other algorithms proposed in the literature we achieve a higher frame
rate and more robustness to fast object motions. Our approach also gives good results
in the face of partial occlusions and illumination changes.
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Abstract. In this paper we present a new approach that uses local structural in-
formation to find correspondences between image and model contour informa-
tion. For a monocular pose estimation scenario, the pose is computed by our
purposed new variant of the ICP (iterative closest point) algorithm which com-
bines Euclidean distance with structure. A local representation of 3D free-form
contours is used to get the structural information in 3D space and in the image
plane. Furthermore, the local structure of free-form contours is combined with
local orientation and phase obtained from the monogenic signal. With this com-
bination, we achieve a more robust correspondence search. Our approach was
tested on synthetical and real data to compare the convergence and performance
of our approach against the classical ICP approach.

Keywords: Pose estimation, ICP algorithm, monogenic signal.

1 Introduction

Many actual applications in robotics and computer vision deal with objects modeled
by e.g. 3D free-form contours and surfaces. Such models are widely used for problems
like monocular and binocular pose estimation and object recognition among others.
The more information available about the nature of these entities, the better are the
chances to solve the correspondence problem in a more efficient and robust way. With
respect to contour models, the simplest and most common representation in the litera-
ture uses parametric functions [17]. Active contour models, also known as ”snakes” are
also widely used for motion tracking and stereo matching [8].

Recently, geometric algebra [16] has been introduced in computer vision as a prob-
lem adaptive algebraic language in case of modeling geometric related problems. It
turned out that the conformal geometric algebra (CGA) is especially useful because
its ability of handling stratified geometrical spaces [12]. The basic geometrical entities
(e.g. points, lines and planes) can be embedded in the conformal space, see [12]. Also
the rigid body motion has a linear representation (called motor) with respect to all ge-
ometric entities derived from spheres. In the work of Rosenhahn [11], sets of coupled
twists are used to model free-form contours and surfaces in the framework of conformal
geometric algebras. In a further work, [13] the pose estimation constraints (point-line,
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point-plane and line-plane) were also used in that algebra. We propose a new local rep-
resentation of free-form contours which allows to extract local structural information,
which can be also embedded in CGA. Thus, it is also compatible with the pose estima-
tion constraints.

Finding correspondences is one of the most challenging problems for computer vi-
sion applications. Two points correspond to each other if a similarity criteria is fulfilled.
The most common and simple approach is the ICP algorithm [3]. Zhang [17] uses a
modified ICP algorithm to deal with the occlusion problem. ICP algorithms combined
with different metrics are also used, for example point-point [2] and point-line [5]. Chen
and Medioni [4] use the sum of square distance between scene and model point in their
ICP variant. An extension of this work was made by Dorai and Jain [5], where an opti-
mal uniform weighting of points is used. A comparison of variants of the ICP algorithm
is presented in [14], where the different variants are applied to align artificially gener-
ated 3D meshes. The above cited methods assume that the scene is almost aligned with
the model (tracking assumption). Since these variants use as feature only point informa-
tion, it is possible to optimize the algorithms for real time applications. Other methods
combine the ICP algorithm with other image processing approaches like optical flow
[10] or bounded Hough transform [15]. These methods seem to be robust but they are
very time consuming, not suitable for real time applications. All the methods based
on punctual information have to consider the tracking assumption in order to perform
efficiently. For the case of the ICP variants combined with complex image processing
approaches, the tracking assumption can be slightly overcome in some cases.

The basic variant of the ICP algorithm finds corresponding point pairs (image-model)
by measuring the minimal Euclidean distance. In this case point coordinates can be
considered as a local feature. One important question when analyzing local features is
how ”local” actually the features should be. The minimal entity which can be described
is a point. The only feature available is its position in the 3D space. A single point
does not give much information about the object in general. From two neighbor points
the local orientation can be derived and three neighbor points are enough to get local
curvature. As the neighborhood is increased, more feature information can be extracted
and therefore, more information about the nature of the object.

In this paper we present a new variant of structural ICP algorithm, which integrates
local features (from model and image) and the structural phase information delivered
from the monogenic signal [6]. One advantage of our ICP variant is that it can be per-
fectly applied for free-form contours and surfaces and it is robust against the track-
ing assumption. A local 3D contour representation is used to extract a feature set for
contour segments, like concavity, convexity and straightness. In the case of the free-
form surfaces, the problem is simplified by extracting the 3D silhouette with respect
of the image plane during the iterative process. Once that the silhouette is projected
onto the image plane, it can be considered as a planar contour and therefore the local
representation can be used. With the combination of these approaches, our ICP variant
reaches a compromise between computational cost and robustness against the tracking
assumption.

For image feature extraction we use the monogenic scale-space approach presented
by Felsberg and Sommer [7], which is briefly described in section 2. In section 3, we
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introduce the local representation of 3D contours based on local motors. The feature set
is obtained from a single motor and the extended set is obtained from contour segments.
The ICP structural algorithm is introduced in section 4 as well as the silhouette based
pose estimation algorithm for free-form surfaces. Finally, in section 5 experiments made
on synthetical and real data are presented to validate the efficiency and robustness of
our algorithm.

2 Image Features in Scale-Space

The monogenic scale-space representation and phase-based image processing tech-
niques were introduced in [7]. If p(x; s) and q(x; s) are the filter responses of an image
convolved with the Poisson and conjugate Poisson kernels respectively, local amplitude
a(x; s) and phase r(x; s) are obtained for a scale s as shown in equation (1).

a(x; s) =
√

|q(x; s)|2 + |p(x; s)|2 r(x; s) = q(x;s)
|q(x;s)|arctan

(
|q(x;s)|
p(x;s)

)
. (1)

The local amplitude is related to the local energy of the signal (used to detect the pres-
ence of structure). Orientation and phase information are combined in the local phase
vector. The local phase gives information about the local symmetry of the signal and the
local orientation gives the orientation of the highest signal variance. An example of the
monogenic response can be seen in figure 1. Then, for an edge point we chose the local
features orientation and phase angles in x and y directions F im

i = {φi, ‖ rx
i ‖, ‖ ry

i ‖}.

Fig. 1. Example of the monogenic signal response for an image. Original image (left), local ori-
entation (center) and phase (right).

Once that the local amplitude and phase are obtained for a scale factor s, a contour
search algorithm based on the local amplitude and orientation is applied to extract the
contour segments. By changing the scale factor, low contrast edges can also be detected.

3 Local Contour Representation

The idea of the local representation is to construct a motor to approximate a contour
segment. A motor is parameterized by a rotation axis and angle. This is illustrated in
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Fig. 2. Local motor for a 3D contour (left). Local coordinate system (middle) needed to get the
circle parameters of the motor and the structural features (right).

the figure 2. A plane is constructed with the 3D points xi−1,xi ,xi+1, which is param-
eterized by its normal n and distance to the origin d . In that plane, a local coordinate
system is defined by

i1 = xi−xi−1
‖xi−xi−1‖ , i2 = n, i3 = i1×i2

‖i1×i2‖ . (2)

To find the rotation axis of the motor we need to calculate the center of the circle. To
make the computations easier, the problem is translated from 3D to a local coordinate
system in 2D. That is the plane defined by the basis vectors i1 and i3 (see right picture
of figure 2). The center of the circle c and the radius vector r are easily calculated in 2D.
Then the coordinates of the center of the circle in 3D are recovered. Thus, the rotation
axis of the motor in 3D is obtained with the center c and the normal vector n. The
rotation angle θi is the angle defined by the segment xi−1cxi+1. Finally the orientation
vector oi is defined by the orthogonal to the radius vector r. Then, for every point of
the 3D contour the local curvature vector and bending angle are calculated by

ki = (xi − xi−1) × (xi+1 − xi) βi = acos (xi−xi−1)·(xi+1−xi)
‖(xi−xi−1)‖‖(xi+1−xi)‖ , (3)

where the points xi , xi+1 and xi−1 are considered in the local coordinate system. In
this case, the e3 component of the resulting curvature vector ki = x1e1 +x2e2 +x3e3
changes its sign when the point is concave or convex. When the scalar x3 has a negative
sign, the point is considered locally convex. Otherwise, it will be locally concave. If
the bending angle βi has a value closed to zero, the point is considered as a part of a
straight line.

An extended feature set allows to get more robust features, especially in the image
plane where noise is present and digital contours are extracted. In this case we are
getting features not only from a single point. The neighborhood of the point is extended
to larger segments in order to take average feature values as shown in equation (4).

ki = 1
m

∑m
j=1 v1 × v2 βi = 1

m

∑m
j=1 acos v1·v2

‖v1‖‖v2‖ , (4)

where v1 = xi − xi−j and v2 = xi+j − xi .
By taking the point xi as a reference, motors are constructed iteratively with the

adjacent points. Then the contour segment is defined by the points {xi−j · · ·xi−1
xi ,xi+1 · · ·xi+j } and the features of that point corresponds to the structure of the
neighborhood.
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3.1 3D and 2D Contour Features

We define the following structural features for a 3D point xi by

F 3D
i = {oi ,ki , βi}, (5)

where oi is the local orientation vector at the point xi , ki is the curvature vector and βi

the bending angle. To get the corresponding 2D features, the contour model points are
projected onto the image plane (see figure 3), motors are constructed and the features
are calculated as described in the last section with the corresponding points in image
coordinates x′

i−1, x′
i and x′

i+1. The normalized orientation vector o′
i is obtained and its

corresponding orientation angle αi.
The concept of phase in the image plane delivers information of the local structure of

the image derived from the monogenic signal. In the case of edges, the phase encodes a
transition from one gray value to another in x and y directions. For 3D contour models,
it is not possible to compute directly phase information in that sense. Despite of that, it
is possible to assign a feature value for a projected 3D contour point that represents such
transition. We call this feature transition index. Figure 3 shows the idea of transitions
tx and ty for a point. The transition takes the values +1 or −1 (equivalent to the phase
responses ‖ rx

i ‖ and ‖ ry
i ‖) depending on the orientation of the vector o′

i . Thus, for a
projected 3D contour point we obtain as features the orientation and transition indexes
in x and y directions F con

i = {αi, txi , tyi } .

Fig. 3. Example of motor construction and the transition index in the image plane (upper left).
Transition index of an projected model contour and phase response of the monogenic signal
(upper right). Example of correspondence pairs for normal (bottom left) and structural (bottom
right) ICP variants.

4 Structural ICP Variant

Our ICP variant combines error metrics with image feature constraints. Thus, in the
image plane we have the following feature sets for projected model segments F 2Dm

i =
{αi, txi , tyi ,k2Dm

i , β2Dm
i } and for detected contour segments F 2Dp

i = {φi, ‖ rx
i ‖, ‖
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ry
i ‖,k2Dp

i , β2Dp
i }. Two points (image and model) form a correspondence pair if the

structural constraints are met. The phase-transition index constraint is defined as

C1 =
{

1 if ‖ rx
i ‖= txi ∧ ‖ ry

i ‖= tyi
0 otherwise

(6)

In the following we will use the sign ∧ to denote the logical ”and” operation. The
straightness constraint is defined from the local bending angles β2Dm

i and β2Dp
i as

C2 =
{

1 if β2Dm
i < t ∧ β2Dp

i < t
0 otherwise

, (7)

where t is a threshold value. Finally, the concavity-convexity constraint is defined from
the sign of the e3 component of the vectors k2Dm

i = x1e1 + x2e2 + x3e3 and k2Dp
i =

y1e1 + y2e2 + y3e3 by

C3 =
{

1 if sign(x3) = sign(y3) ∧ C2 = 0
0 otherwise

(8)

Figure 3 shows the idea of ICP combined with structural constraints (straight, concave
or convex). The bottom left figure shows the case where only the minimal distance is
considered, on the bottom right one for the structural variant. As can be seen, for a point
in the bottom curve, its corresponding point in the upper curve will be the nearest point
with the same local structure. This is analogous for the ICP plus the phase-transition
index constraint, see upper left picture of figure 3.

4.1 Pose Estimation for 3D Surfaces

An algorithm for pose estimation of 3D surfaces models was proposed in [10], where
the 3D silhouette of the model is extracted for every iteration of the minimization pro-
cess. Originally, the classical ICP algorithm was applied to find the pose of the 3D
silhouette. The position of the complete surface model is updated and the process is
repeated for a given number of iterations. We use a similar idea, but in our approach
the problem is completely translated to the image plane by projecting the extracted 3D
silhouette onto the image plane (2D silhouette). As it can be seen in figure 4, the local
motors of the 2D silhouette are constructed in the image plane and its local features are
also computed. The algorithm is summarized in figure 4.

5 Experiments

We used for our experiments 3D planar contour models and 3D surfaces (see figure 5)
rich in structure like the ”cactus” and ”puzzle” models and also the ”mouse” model,
which has less structure. Also the power socket and motor part surface models were
considered. In the first experiment we compare the convergence behavior of a normal
ICP algorithm and our structural ICP variant. The initial position of the model is known,
then it is translated and rotated to its actual position and projected onto the image plane
to generate an artificial image. On this artificial image the corresponding contour seg-
ments and the local features are extracted. Then the pose is calculated and compared
with the ground truth. For these experiments relatively large displacements were applied
to the model in order to test the robustness against the tracking assumption.
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Fig. 4. Motor construction in the image plane (left). Algorithm for the silhouette based pose
estimation (right).

Fig. 5. The object is translated in all directions in the plane. For every translation the pose is
calculated and compared with the ground truth (left). Different models used in the experiments
(right to left): cactus, puzzle, mouse motor part and power socket.

5.1 Free-Form Contours

In the sequence of images in the figure 6, we compare the convergence behavior of a
normal ICP algorithm against our structural variant when the tracking assumption is
not met. For such cases, the pose estimation algorithm with the normal ICP variants
does not converge to the actual model position. A direct comparison of the convergence
behavior can be seen in the the first row of figure 7. Two different pose estimation
algorithms were tested with our ICP variant, the 2D-3D [13] and projective ones [1]. In
both cases, the structural ICP variants needs less iterations to converge.

The normal variants of the ICP algorithm consider as a correspondence constraint
only the Euclidean distance plus a weighting error factor or a different search strategy.
This has the effect that, in the first iterations many bad conditioned correspondences are
found and therefore the convergence is slower or in some cases, the algorithm does not
converge at all. The structural variant will also consider the constrains of equations (6),
(8) and (7). This increases the probability to find better conditioned correspondences
and therefore the convergence rate of the algorithm is increased.

A second experiment was made to test the robustness of our algorithm against the
tracking assumption. For this case, the model was rotated around its z axis for zero to 50
degrees. As can be seen in the second row of figure 7, with the structural ICP algorithm
the pose error is minimal for rotations up to 30 degrees for the 2D-3D algorithm and
40 degrees for the projective one. This shows that our structural ICP variants allows
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Fig. 6. Convergence sequence for normal (top row) and structural (bottom row) ICP variants
applied to the cactus model
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Fig. 7. First row, convergence behavior comparisons of the normal and structural ICP variants
applied to the 2D-3D pose estimation algorithm (left) and the projective algorithm (right). Second
row, robustness against rotations for the 2D-3D (left) and the projective algorithms (right).

larger model rotations than the normal ICP variants. The robustness of the structural
ICP algorithm against the tracking assumption depends on the nature of the object and
its contour. For contours which are rich in structural information larger rotations and
translations are allowed.

The next experiment was made to test the magnitude and direction of the maximal
possible translations allowed for the ICP structural algorithm. In this case, see figure
5, the object model was translated to all directions in the plane where it is defined.
For every position, the pose was calculated with the structural ICP algorithm and the
projective pose estimation [1].
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The results for the cactus, puzzle and mouse models are shown in figure 8. These
figures show the convergence regions of the algorithm when translations are applied.
For the cactus, the algorithm is more sensitive to translations in y direction, which
corresponds to translations in the major axis direction (see figure 5), while relatively
large translations are allowed in x direction (minor axis direction). The same effect
can be seen for the puzzle model. The figures show that for certain positions the cor-
respondence search is better conditioned. As the translation increases, the probability
to find more bad conditioned correspondences also increases and therefore the pose
error. The puzzle model and the cactus are complex objects, with enough structure
to deal with relatively large translations. The bottom figure shows the result for the
mouse model. In this case the mouse model does not have much structural informa-
tion. Therefore, as can be seen in the figure 8, for large translations the error increases
considerably.
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Fig. 8. Pose error for the translation case for the cactus model (top left), for the puzzle model (top
right) and for the mouse model (bottom)

5.2 Free-Form Surfaces

From the initial position of the model, its main orientation axes were extracted in 3D.
They define the rotation axes α, β and γ, as it can be seen in figure 9. After rotating
the model around each axes, the corresponding artificial image was generated. In its
new position, the pose was computed and compared with the ground truth. The upper
graphics of figure 9 show a comparison of the convergence behavior for the motor and
power socket models. In this case the model was rotated -30 degrees around the γ axis.
The normal ICP algorithm does not converge to the ground truth pose as it can be seen
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Fig. 9. Setup for the experiment for the rotation case (upper left) and convergence behavior com-
parison for the power socket (upper middle figure) and motor part (upper right). Convergence
ranges for rotations around the axes α (bottom left), β (bottom middle figure) and γ (bottom
right).

in the graphics. In contrast to that, the algorithm is able to converge to the real pose
with the structural ICP.

As the model rotates around each 3D axes, its appearance changes with respect of
the image plane and therefore its local structure. Because of that, it is interesting to
analyze the rotation ranges within which the algorithm is still able to converge to the
ground truth pose. The figure 9 also shows a comparison of the convergence ranges
for the power socket model. The normal variant of the ICP algorithm converges for
relatively small rotations around all axes. Whereas the structural ICP variant allows
larger rotations. In the case of the rotation axes α and γ, the extracted silhouette changes
drastically as the angle increases with respect of the image plane, therefore, the region
where the algorithm converges is smaller. Despite of that, the the structural ICP variant
shows larger convergence ranges than the classical variant for all rotation angles.

5.3 Real Pose Estimation Scenario

Finally, we applied our algorithm to image sequences of a real scenario. The algo-
rithm was tested on a Linux based system with a 3 Ghz. Intel Pentium 4 processor.
Some examples of the test sequences are shown in figure 10. The upper images show
the initial position of our model and the bottom images the pose result using our ICP
structural variant and the projective pose estimation algorithm. For every image the
monogenic signal response was obtained and a contour search algorithm based on the
local orientation and phase information was applied to detect the edge segments, then
from these detected contour points the structural features were calculated. The average
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Fig. 10. Initial position (upper rows) and estimated pose (lower rows ) for the cactus, puzzle and
mouse models

computing time per frame for the hole image processing module was 225 milliseconds.
Due to the relatively large displacement of the object, more iteration steps are needed
for the algorithm to converge and therefore the computational time increases. For these
sequences the average computation time (image processing plus pose estimation) was
2.65 seconds.

Figure 11 shows some examples taken from different test sequences for the 3D sur-
faces. Because of the extra computation of the 3D silhouette, the average computing
time increases to 3.17 seconds. Presence of noise, shadows or illumination changes in
the scene may cause uncertainty in the feature computation and therefore in the corre-
spondence search. Because of that, the Euclidean distance criterion used in [9] was used
to eliminate possible outliers. Correspondence pairs are rejected if their point-to-point
distance is larger than 2.5 times the standard deviation of the complete correspondence
set.
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Fig. 11. Example of the estimated pose for the surface sequences with the structural ICP algorithm

6 Conclusions and Future Work

A new variant of the ICP algorithm for pose estimation of 3D free-form contours and
surfaces based on local structural features was presented. The experimental test proved
that our structural ICP algorithm performs efficiently for rich structured objects, for
large translations and rotations between scene and object model. The experiments show
that our ICP algorithm combined with the projective pose estimation approach can han-
dle larger object displacements. That means, the feature constraints used to search cor-
respondences and the pose estimation constraints involved in the minimization problem
are better conditioned in the image plane. Although our approach does not reach re-
quirements for real time applications [14], the computation times reported for the test
sequences are a good tradeoff if we consider that the tracking assumption has been
significatively overcome. A natural extension for our approach is to consider the pose
estimation of free-form contours and surfaces in a more general scenarios (general oc-
clusion and non-regular backgrounds), where local and global structural features (from
model and image) will be combined to develop an approach capable to deal with even
larger translations and rotation ranges.
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this project.
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Abstract. Disparity contours are easily computed from stereo image pairs, given
a known background geometry. They facilitate the segmentation and depth calcu-
lation of multiple foreground objects even in the presence of changing lighting,
complex shadows and projected video background. Not relying on stereo recon-
struction or prior knowledge of foreground objects, a disparity contour based
image segmentation method is fast enough for some real-time applications on
commodity hardware. Experimental results demonstrate its ability to extract ob-
ject contour from a complex scene and distinguish multiple objects by estimated
depth even when they are partially occluded.

Keywords: Multi-object segmentation, stereo matching, background model, dis-
parity verification, disparity contours.

1 Introduction

A wide variety of applications require an efficient method to extract moving objects
from a scene. One particular case, of isolating and distinguishing multiple objects in the
face of rapid changes in illumination and texture, is especially relevant to augmented re-
ality, immersive telepresence, and the entertainment and film industry, where projected
moving backgrounds are often present. An example is shown in Fig. 1, where local and
remote users interact with each other and with virtual objects in a virtual world. To suc-
cessfully track, render and interact with users in this synthetic environment, the system
must separate them visually from their actual physical surroundings in real time.

This problem motivated the development of disparity contours, a simple and easily
computed 2.5D representation from which object segmentation and depth computation
can be derived.

Existing approaches to object/background segmentation fall into two broad cate-
gories, depending on how many views they take as input. Single view background
subtraction [24,16,21,14,15,2] compares each image to a reference model and labels

� This research was carried out at the Centre for Intelligent Machines, McGill University, Mon-
treal, Quebec, Canada.

J. Braz et al. (Eds.): VISIGRAPP 2007, CCIS 21, pp. 218–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Disparity Contours – An Efficient 2.5D Representation 219

Fig. 1. Example of an augmented reality environment

pixels as background or foreground based on statistics. Despite their adaptability to
slow changes in lighting, texture, geometry and shadow, methods of this type all as-
sume background change to be much less dynamic than foreground.

Using occlusion based depth ordering, layered motion segmentation [22,8,1,23] de-
composes image sequences into sets of overlapping layers, each described by a smooth
optical flow field. Discontinuities in the description are attributed to moving occlusions,
resulting in a (weak) 2.5D scene representation. Unfortunately, the computation of op-
tical flow is time-consuming, and these methods cannot distinguish a real scene from a
video background.

Integrating multiple views is a natural alternative for tackling dynamic environments,
with added benefits in handling occlusion. Some systems work from 3D reconstruc-
tion to object segmentation and tracking [13], and others combine segmentation with
stereo matching [20,12]. Sadly, frame-by-frame stereo reconstruction is also slow and
so far unsuited to real-time use. Moreover, the uniform or repetitive textures common
in indoor scenes and video-augmented spaces constitute worst-case inputs for stereo
matching algorithms [11,17], often leading to disappointing results.

Attempts have been made to use stereo while limiting computational cost. One of
them combines stereo with background subtraction and suggests disparity verification
for segmentation under rapid illumination change [7]. Using three cameras on wide
baselines, the method constructs offline disparity mappings for the background images,
and at runtime separates foreground from background by matching pixels correspond-
ing in the mappings, thus avoiding slow disparity search. Unfortunately, the wide base-
line setup, despite its effectiveness in extracting the entire foreground area, has diffi-
culty fusing multiple views of a target, which is essential for tracking multiple moving
objects. This weakness, in the longer run, also limits the method’s adaptability to back-
ground geometry change.

Another approach increases speed by decreasing the number of disparity layers in
stereo matching, and proposes layered dynamic programming and layered graph cut for
foreground/background separation [10]. Although tolerance of background motion has
been demonstrated, published results show only cases with a substantial depth differ-
ence between background and foreground, with foreground objects very close to the
camera. This is a strong limitation for many real-world applications.
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Both of these fast stereo approaches stop at bi-layer pixel labelling, and do not at-
tempt to distinguish multiple objects. The additional processing required for accurate
object location would be extensive.

This paper introduces a new small-baseline stereo representation, disparity contours,
computed by geometrically informed background subtraction. This representation di-
rectly provides object boundaries and allows fast, incremental disparity adjustment for
objects at different depths, leading to a straightforward depth extraction method. On this
basis, we have developed a stereo segmentation system that can isolate and distinguish
multiple objects in the presence of highly dynamic lighting and background texture.
In addition to the advantage of bypassing full stereo reconstruction and achieving fast
performance, it has the potential to support 2D and 3D object tracking and background
geometry update.

2 Disparity Contours

In this section, we explain disparity contours in detail, showing how to use them to
estimate foreground disparity and depth, and verify object hypotheses.

2.1 Background Hypothesis Falsification (BHF)

In our proposal, the spatial geometry of a background is represented by a background
disparity map (BDM) describing the relative displacement, or disparity, of pixels cor-
responding to the same background point in each camera view. The input images are
first undistorted and rectified so that pairs of conjugate epipolar lines become colinear
and horizontal [6]. This brings the pixels originating from a scene point s to a common
scanline, falling at (xL(s) ,y(s)) in VL, the left view, and (xR(s) ,y(s)) in VR, the right.
We call the difference

xL(s) − xR(s) = dB(s), (1)

which increases with proximity to the camera, the background disparity at s, and
define the BDM to be

BDM = {〈xL(s) ,xR(s) ,y(s)〉} , (2)

where s ranges over all background scene points visible to either camera and within
their common field of view.

Given the BDM for two cameras, each new pair of captured images are hypothesized
to be of background alone, and a view difference map (VDM) is computed from the
stored correspondences by block matching, using a vertical stripe window to maintain
contour widths and aggregate neighborhood support:

VDMBHF(xL, xR, y) =
∑
u,v

|VL(xL + u, y + v) − VR(xR + u, y + v)| ,

where 〈xL, xR, y〉 ∈ BDM and yL = yR = y. (3)

If the images are well synchronized, this operation cancels instantaneous background
texture.
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Fig. 2. Background hypothesis falsification. Mismatch occurs at object boundaries and interiors.

Thus, ideally, VDMBHF(xL, xR, y) = 0 where a scene point s is truly part of the
background, but is larger if either of the pixels VL(xL, y) and VR(xR, y) belongs to a
foreground object. Thus a value significantly different from zero leads to the falsifica-
tion of the hypothesis that the BDM is an accurate local description at a given scene
point.

In reality, the result depends on the visual difference between background and fore-
ground, between different foreground objects, and between points within foreground
objects, as illustrated in Fig. 2. Suppose 〈aL, aR, y〉, 〈bL, bR, y〉, 〈cL, cR, y〉 and
〈dL, dR, y〉 are entries on the yth scanline in the BDM. At object boundaries, segments
[(aL, y) , (bL, y)] and [(cL, y) , (dL, y)] in the left image are mismatched against seg-
ments [(aR, y) , (bR, y)] and [(cR, y) , (dR, y)] in the right, respectively. In object interi-
ors, segment [(bL, y) , (cL, y)] is mismatched against segment [(bR, y) , (cR, y)].

As most (non-camouflaged) real-world objects are texturally coherent, we find that
foreground-background mismatches at object boundaries have higher intensity than
those from object interior autodecorrelation, as visible in Fig. 9(b). Further, since
boundary mismatches derive from the geometry of projection, they also have more reg-
ular shape. We now examine these boundary mismatches in detail.

2.2 Disparity Contours

At object boundaries, stereo mismatch arising from background hypothesis falsification
forms contours, as illustrated in Fig. 3. Since disparity increases with proximity to the
cameras, the width of the contour area in which background is mismatched against
foreground depends on how poor the assumption of background was, in terms of depth
error.

Consider, without loss of generality, the left view. According to Fig. 2 and Eq. (1),
we have

xL(aL) − xR(aR) = dB(aL). (4)

Since bL and aR map to the same foreground point,

xL(bL) − xR(aR) = dF(bL), (5)
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Fig. 3. Disparity contours from background hypothesis falsification. Contour widths equal differ-
ential disparities between object and background.

where dF(bL) is the foreground disparity at bL. Subtracting Eq. (4) from (5) and elim-
inating xR(aR),

xL(bL) − xL(aL) = dF(bL) − dB(aL). (6)

Similarly,
xL(dL) − xL(cL) = dF(dL) − dB(cL). (7)

This means that the lengths of the segments [(aL, y) , (bL, y)] and [(cL, y) , (dL, y)] are
exactly the differences between the foreground and background disparities at the object
boundaries, and encode depth. Combining such segments vertically as in Fig. 3 will
yield the depth-encoding contours of foreground objects, referred to as disparity con-
tours. As the figure makes clear, the resulting contours lie at the left of object bound-
aries in the left image but at the right in the right image. There is thus no ambiguity in
the boundary locations once the contours are extracted.

2.3 Foreground Disparity and Depth Estimation

Foreground disparity can be estimated given the extracted disparity contours and the
background disparities. Let c be a contour line segment in the left view of length |c|,
and c+ and c− its left and right end points, as in Fig. 3. From Fig. 2 and Eq. (6), we
have

d(c) = |c| = xL

(
c−

)
− xL

(
c+)

= dF(c−) − dB(c+). (8)

Here d(c) is the differential disparity between the background and foreground. We
rewrite this equation, simplifying the notation without ambiguity, as:

dF(c) = dB(c) + d(c), (9)

which yields the foreground disparity at the boundary point. Let R be a contour re-
gion containing |R| such line segments. The average foreground disparity of R can be
calculated by:

d̄F(R) = |R|−1
∑
c∈R

dF(c). (10)
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Similarly, the average disparity of an object O is:

d̄F(O) =
∑

R∈O |R|d̄F(R)∑
R∈O |R| . (11)

Thus, its average depth can be computed as

z̄F(O) = b · α / d̄F(O), (12)

where b is the baseline, i.e. the distance between the focal points of the two cameras,
and α is the pixel focal length along the x axis of the (virtual) rectified cameras [18,6].

2.4 Foreground Hypothesis Verification (FHV)

Once disparity contours are extracted, we need to verify the potential objects delimited
by the contours. Again, this can be done using disparity verification.

Let Ri and Rj be two vertically overlapping contour regions in the left view, i.e.
πy(Ri) ∩ πy(Rj) �= ∅, as shown in Fig. 4. If there is a potential foreground object
between Ri and Rj , and assuming the depth range of a foreground object is much smaller
than the object-to-camera distance, its average disparity can be approximated, based on
Eq. (11), by

d̄F(Ri, Rj) =
|Ri| d̄F(Ri) + |Rj | d̄F(Rj)

|Ri| + |Rj |
. (13)

This foreground hypothesis can be verified by

VDMFHV(xL, xR, y) = |VL(xL, y) − VR(xR, y)| ,
where (xL, y) ∈ Aij and xL − xR = d̄F(Ri, Rj). (14)

For robustness, a contour matching cost is defined to normalize this result over the
matching area Aij :

µM(Ri, Rj) =

∑
(xL,y)∈Aij

VDMFHV(xL, xL − d̄F(Ri, Rj), y)

area (Aij)
. (15)

Fig. 4. Foreground hypothesis verification by matching two disparity contour regions Ri and Rj ,
left view



224 W. Sun and S.P. Spackman

Then the foreground hypothesis between Ri and Rj is confirmed if µM(Ri, Rj) is less
than a threshold τM. Similarly, if an object is formed by grouping several contour re-
gions, an object cost µM(O) can be defined using the object’s peripheral contours on
the left and right sides to verify the object hypothesis.

2.5 Contour Grouping Direction

§2.4 provides an analysis of the ideal case of foreground verification. In reality, both
background hypothesis falsification (BHF) and foreground hypothesis verification
(FHV) depend on the amount of texture in the foreground and background. To un-
derstand the matter further, Fig. 5 plots the left view VDM results of BHF, FHV, and
their subtraction along the yth scanline of Fig. 3, assuming significant visual difference
between foreground and background. The results are classified according to whether
the background and foreground are textured or plain.

As can be observed, BHF distinguishes the foreground from the background only if
the foreground is textured, and FHV does so only if the background is textured. How-
ever, the subtraction of the two, BHF−FHV, yields consistently higher values within
the object area, between (bL, y) and (cL, y), than in the background area, left of (aL, y)
and right of (dL, y), in three of the four cases. Even though the last case, where both
the foreground and background are plain, would pose difficulties, it is statistically rare
that the entire background and foreground areas remain textureless over time in a real
environment. Therefore, by comparing BHF−FHV values in the left and right neigh-
bourhoods of a contour region, we are able to determine in which direction, left or right,
a contour region should be grouped with other contours.

Let the left neighbourhood A�(R) of a contour region R be constrained by both the
rightmost vertically overlapping contour region to the left of R and a distance threshold
τN, whichever is closer, as illustrated in Fig. 6.

Fig. 5. The yth scanline of view difference map (VDM), left view, where (aL, y), (bL, y), (cL, y),
(dL, y) are the end points of disparity contour line segments, as in Fig. 3. The horizontal dashed
lines indicate zero values and the solid lines indicate the VDM calculation results, simplified
as positive, negative or zero. Top: VDMBHF from background hypothesis falsification; middle:
VDMFHV from foreground hypothesis verification; bottom: VDMBHF − VDMFHV.
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Fig. 6. Left and right neighbourhoods of contour region R for computing contour grouping direc-
tion

Let µ�(R) denote the normalized subtraction result BHF−FHV in A�(R):

µ�(R) =

∑
(xL,y)∈A�(R) VDMBHF(xL, x′

R, y) − VDMFHV(xL, x
′′
R, y)

area (A�(R))
,

where 〈xL, x
′
R, y〉 ∈ BDM and xL − x′′

R = d̄F(R). (16)

Similarly, let µ�(R) denote the normalized BHF−FHV result in R’s right neighbour-
hood A�(R). The contour grouping direction µD(R) can then be calculated as:

µD(R) = µ�(R) − µ�(R). (17)

According to Fig. 5, R is on the left boundary of an object if µD(R) < 0, on the right
boundary if µD(R) > 0, and within an object or background (or both the object and
background are textureless) if µD(R) = 0.

3 Multi-object Segmentation

Based on disparity contours, a multi-object segmentation system has been developed,
as illustrated in Fig. 7; its implementation is discussed in depth elsewhere [19].

The system factors the segmentation problem into two stages: a well-understood
offline stage and a novel online one.

Using the parameters of two calibrated cameras [18], the offline stage constructs a
background geometry model in the form of a background disparity map (BDM). This
can be done by stereo matching [11,12,17], structured light [25], or ray tracing [5] from
direct measurements of room geometry. The result is shown in Fig. 8.

Following the ideas of §2, the online stage compares new frames, captured, synchro-
nized, undistorted and rectified, according to the pixel correspondence stored in the
BDM, to falsify the background hypothesis of the scene (BHF) and generate difference
images, as shown in Fig. 9(b).

To extract disparity contours in a difference image D, a simple [−1 1] edge operator
is applied to generate an edge image. Clearly, positive edges are obtained on the left of
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Fig. 7. Multi-object segmentation system overview

(a) (b)

Fig. 8. (a) Left background image after undistortion and rectification. (b) Background disparity
map (BDM) by ray tracing from 3D measurements.

(a) (b) (c) (d) (e)

Fig. 9. Processing sequence. (a) Original left view VL after undistortion and rectification. (b) Cor-
responding left projection DL of view difference map. High responses occur at object bound-
aries and within objects of non-uniform texture. (c) Extracted and cleaned disparity contours,
augmented with contour region bounding boxes. Brightness represents average region intensity.
(d) Contours grouped by matching and disparity verification. (e) Objects segmented by grouped
contours.

a contour ridge in D and negative edges on the right. Positive and negative edge points
are thus paired to form horizontal line segments, c, and their lengths, |c| = d(c), equal
the differential disparities between foreground and background. Contour regions, R, are
then formed by connecting these line segments vertically.

In order to remove noise caused by background model inaccuracies and foreground
object internal texture, extracted contours go through an outlier removal step, including
local line segment regularization and global region outlier removal. First, based on a
Gaussian assumption, the horizontal line segments within each contour region whose
lengths are outliers with respect to the region average are eliminated. Contour regions
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thus disconnected are reconnected by interpolation. Second, based on the observation
that unwanted contour regions due to noise are usually small and of low intensity, and
again assuming a Gaussian distribution for the two variables, the regions whose area
and intensity are outliers with respect to the largest and brightest region are removed.
Fig. 9(c) shows the final cleaned contours.

Computing closed bounding object contours from bounding fragments relies on con-
tour grouping, studied for many decades in perceptual organization [3,4]. However,
reliable contour grouping requires much computation and is unsuitable for real-time
applications. We use a simple technique based on contour matching and disparity veri-
fication.

First, an initial grouping is performed to associate a contour region to its neighbours
if they are close to each other and have similar average intensity and disparity. Then,
based on contour grouping direction µD(R), neighbouring contour regions with appro-
priate directions are selected for matching. If the matching cost µM(Ri, Rj) is low, the
regions are labelled to the same group. Finally, after all contour regions are grouped to
objects, the object costs µM(O) are evaluated and objects with high cost are eliminated
as false. Fig. 9(d) demonstrates the result of contour grouping.

As explained in §2.2, disparity contours contain information about object boundary
location in the input images. Therefore, objects can be segmented using the grouped
contours, as shown in Fig. 9(e).

4 Results and Analysis

The proposed segmentation system was tested in the augmented reality environment
shown in Fig. 8(a). This space, which is representative of an important class of target en-
vironments, has a simple geometry, easing BDM construction, and allows for dynamic
re-texturing of over 80% of the wall surface. Since, however, the method depends only
on geometric stability, it is also applicable to more complex scenes.

A video with rapid changes in texture and illumination was projected onto the three
screens surrounding the subjects. Two cameras on a small baseline were used and a
grayscale image sequence of 1130 frames containing over 2000 foreground object in-
stances was captured. Sample images are shown in Fig. 10. As can be seen, the proposed
method extracts multiple foreground objects despite complex changes in background
texture.

In order to study the accuracy of object location, a quantitative analysis was con-
ducted based on object bounding boxes, as shown in Table 1 and Fig. 11. The rate of
‘accurate’ object location, indicated by exact bounding boxes, with respect to the num-
ber of total objects reaches 60%, while the rate of ‘correct’ object location, including
exact, noise enlarged, and partial object bounding boxes, totals 85%. Although par-
tial occlusion, resulting in irregular contours, poses a challenge, the system still yields
nearly 40% for ‘accurate’ object location and 55% for ‘correct’ location.

The thresholds on the matching cost τM = 20, the neighborhood distance τN = 50,
and an 11 × 1 block matching window for Eq. (3), were chosen empirically during
algorithm development. No adjustment was required in testing. Further experiments
(not detailed here) show that the method is quite robust to variation in these parameters.



228 W. Sun and S.P. Spackman

Fig. 10. Samples of multi-object segmentation in the presence of fast lighting and texture changes.
Top row: original images after undistortion and rectification, with bounding boxes indicating
segmentation results. Second row: contour grouping results. Third row: objects segmented from
the scene. Last row: comparison with scene disparity map by graph cut [9].

Table 1. Object location accuracy with respect to the number of total objects

no occlusion partial occl’n all objects
total true objects 1767 100.00% 334 100.00% 2101 100.00%
accurate exact bounding box 1113 62.99% 127 38.02% 1240 59.02%

inaccurate
enlarged bounding box 335 18.96% 19 5.69% 354 16.85%
partial object 182 10.30% 38 11.38% 220 10.47%

incorrect

enlarged partial object 99 5.60% 6 1.80% 105 5.00%
coalesced object 38 2.15% 140 41.92% 178 8.47%
object undetected 0 0.00% 4 1.20% 4 0.19%
false object 294 13.99%

exact

enlarged

partial
enlarged partial

coalescing
undetected

exact

enlarged
partial

enlarged partial

coalescing

undetected

exact
enlarged

partial

enlarged partial
coalescing

undetected

(a) no occlusion (b) partial occlusion (c) all objects

Fig. 11. Object location accuracy with respect to the number of total objects
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Fig. 10 also compares our results to those of the graph cut algorithm [11], one of the best
stereo algorithms to date. Although graph cut produces acceptable scene disparity maps,
its weakness on textureless regions, common in projected background, introduces many
imperfections. Object segmentation based on this result would be challenging, requiring
a large amount of post-processing.

Our unoptimized research implementation processes 640 × 480 monochrome image
pairs at a rate of 3.8Hz (compared to graph cut’s 0.0023Hz) on a 1.8GHz 32 bit AMD
processor. Our analysis suggests that an improved implementation can be structured
to achieve performance comparable to only a few linear passes over the input data.
Crucially, of course, the construction of the BDM is offline and does not contribute to
the online processing time.

Although overall performance of the system is encouraging, some problems remain,
due to both external errors and algorithm issues.

The foremost source of external error is imprecise environment calibration. Inac-
curacies in the background model BDM introduce systematic noise that confuses the
segmenter and causes false objects. Using a special measurement device such as a laser
pointer is expected to solve this problem. Other external errors such as camera synchro-
nization error and video deinterlacing artifacts, whose effects are amplified by image
undistortion and rectification, could be eliminated by employing progressive scan video
cameras that take clock inputs.

Issues related to the algorithm itself include misleading contour grouping direction
arising from texturelessness in both background and foreground, partial occlusion, the
sensitivity of block matching to differences in camera response, viewing angle and spec-
ular lighting, and the dependence of boundary detection upon local intensity difference
between background and foreground. However, based on the high success rate already
achieved, exploiting the temporal coherence in an image sequence and adopting a higher-
level tracker to propagate good segmentation results holds promise in all these areas.

Finally, the nature of the horizontally positioned stereo system results in a failure to
detect horizontal or near horizontal object contours, such as at the top of the head and on
the shoulders, and we have yet to investigate performance on highly textured foreground
objects such as clothes with strong vertical patterns. However, adding vertical stereo
into the framework and combining results on both axes can be expected to resolve both
these concerns.

5 Conclusions

Disparity contours, an easily computed 2.5D stereo representation, is presented. On
this basis, a new stereo image segmentation method to isolate and distinguish multiple
foreground objects in a scene with fast illumination and texture change is developed.
Without requiring full stereo reconstruction or tedious empirical parameter tuning, the
method achieves near-real-time performance in software and generates not only the
2D image locations of objects but also boundaries, disparity and depth information,
providing a natural extension to 3D processing. As no assumption is made on the shapes
and textures of objects and environment, the proposed approach suits generic object
segmentation tasks.
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Abstract. This paper presents a video-based camera tracker that combines mark-
er-based and feature point-based cues in a particle filter framework. The frame-
work relies on their complementary performance. Marker-based trackers can
robustly recover camera position and orientation when a reference (marker) is
available, but fail once the reference becomes unavailable. On the other hand,
feature point tracking can still provide estimates given a limited number of fea-
ture points. However, these tend to drift and usually fail to recover when the
reference reappears. Therefore, we propose a combination where the estimate of
the filter is updated from the individual measurements of each cue. More pre-
cisely, the marker-based cue is selected when the marker is available whereas
the feature point-based cue is selected otherwise. Feature points are dynamically
found in scene and used for further tracking. Evaluations on real cases show that
the fusion of these two approaches outperforms the individual tracking results. A
critical aspect of the feature point-based cue is to robustly recognise the feature
points depite rotations of the camera. A novelty of the proposed framework is the
use of a rotation-discriminative method to match feature points.

1 Introduction

Combination of tracking techniques has proven to be necessary for some camera track-
ing applications. To reach a synergy, techniques with complementary performance have
first to be identified. Research on camera tracking has concentrated on combining sen-
sors within different modalities (e.g. inertial, acoustic, optic). However, this identifica-
tion is possible within a single modality: video trackers. Video-based camera tracking
can be classified into two categories that have compensated weaknesses and strengths:
bottom-up and top-down approaches [1]. For the first category, the six Degrees of Free-
dom (DoF), 3D position and 3D orientation, estimates are obtained from low-level 2D
features and their 3D geometric relation (such as homography, epipolar geometry, CAD
models or patterns), whereas for the second group, the 6D estimate is obtained from
top-down state space approaches using motion models and prediction. Marker-based
systems [2] can be classified in the first group. Although they have a high detection rate
and estimation speed, they still lack tracking robustness: the marker(s) must be always
visible thus limiting the user actions. In contrast to bottom-up approaches, top-down
techniques such as filter-based camera tracking allow track continuation when the ref-
erence is temporarily unavailable (e.g. due to occlusions). They use predictive motion

J. Braz et al. (Eds.): VISIGRAPP 2007, CCIS 21, pp. 232–243, 2008.
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models and update them when the reference is again visible [3,4]. Their weakness is, in
general, the drift during the absence of a stable reference (usually due to features dif-
ficult to recognise after perspective distortions). Filter-based camera tracking generally
uses available data such as feature points to correct the filtered state. The problem with
feature points is to reliably recognise them. Most techniques use descriptors based on
the grey-level or colour histogram or directly the intensity (templates) of their neigh-
bourhood [3,4]. Feature points change their appearance at consecutive frames due to
camera motion. Therefore, methods that robustly recognise feature points despite those
changes have to be employed.

In this paper, we present a particle-filter based camera tracker. The main purpose of
this framework is to take advantage of the complementary performance of two particu-
lar video-trackers. The system combines the measurements of a marker-based cue (MC)
and a feature point-based cue (FPC). The MC tracks a square marker using its contour
lines. The FPC tracks the feature points found in the scene. The proposed framework
extends the camera traking system presented in [5]. In this previous work, only the cor-
ners of the marker are used and the method to recognise feature points is very sensible to
rotations of the camera. We propose a novel use of the rotation discriminative template
matching (RDTM) method described in [6]. More precisely, this method is employed
here to recognise feature points despite large rotations.

The paper is structured as follows. Section 2 describes similar works. The techniques
involved in the combination and the proposed tracker are presented in Section 3. Sev-
eral experiments and results are given in Section 4. Conclusions and future research
directions are finally discussed.

2 Related Work

In hybrid tracking, systems that combine diverse tracking techniques have shown that
the fusion obtained enhances the overall performance [7].

The commonly developed fusions are inertial-acoustic and inertial-video [7]. Iner-
tial sensors usually achieve better performance for fast motion. On the other hand,
in order to compensate for drift, an accurate tracker is needed for periodical correc-
tion. The advantage of using a bottom-up approach such as a marker-based tracker is
that drift is automatically reduced each time the detection occurs. Several works have
combined marker-based approaches with inertial sensors [8,9]. [9] presented a square
marker-based tracker that fuses its data with an inertial tracker, in a Kalman filtering
framework. Among the existing marker-based trackers, two recent works, [10] and [11]
stand out for their robustness to illumination changes and partial occlusions. [10] takes
advantage of machine learning techniques, and trains a classifier with a set of markers
under different conditions of light and viewpoint. No particular attention is given to
occlusion handling. [11] uses spatial derivatives of grey-scale image to detect edges,
produce line segments and further link them into squares. This linking method permits
the localisation of markers even when the illumination is different from one edge to the
other. The drawback of this method is that markers can only be occluded up to a certain
degree. More precisely, the edges must be visible enough to produce straight lines that
cross at the corners.
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However, little attention has been given to fusing diverse techniques from the same
modality. Several researchers have identified the potential of video-based tracking fu-
sion [1,12]. Among these, [1] is the only reported work to fuse data from a single cam-
era. Their system switches between a model-based tracker and a feature point-based
tracker, similar to that of [4]. Nonetheless, this framework takes limited advantage of
the filtering framework and still needs the assistance of an inertial sensor.

Recent works have addressed the problem of robustly identifying feature points in
camera tracking frameworks [13,15]. In both cases, the application of invariant descrip-
tors for correct feature point matching has brought important improvements. Sim et al.
[13] use SIFT features [14], which have high scale and rotation invariance enabling
accurate tracking. However, the extraction and description of SIFT features makes the
mapping of the scene more complicated. Indeed, the data association of feature points
between frames cannot be used in a straightforward manner because the descriptors are
scale invariant and hence the features have many different scales. Therefore, the asso-
ciation is done by traversing all the list of feature descriptors. This process has a large
computational cost and the overall system runs at 11.9 seconds per frame. Chekhlov et
al. [15] propose a multi-resolution descriptor based also on SIFT. The approach differs
from [13] in that the extraction of feature points is done at a fixed scale. In order to
be scale invariant, several SIFT descriptors at different scales are stored for each fea-
ture. At runtime, the scale is selected according to camera pose and 3D feature position.
Once the scale is selected, the validation can be computed.

Those descriptors differ from the descriptor presented in [6] mainly in the fact that
rotation information is lost. We propose to exploit this information during the filter
update by associating it to the estimated camera rotation.

3 System Description

This section describes the parameters of the filter, how the marker-based and the feature
point-based cues are obtained, as well as the procedure used to fuse them in the filter.

3.1 Particle Filter Equations

We target applications where the camera is hand-held or attached to the user’s head.
Under these circumstances, Kalman filter-based approaches although extensively used
for ego motion tracking, lead to a non optimal solution because the motion is not white
nor has Gaussian statistics [16]. To avoid the Gaussianity assumption, we have chosen
a camera tracking algorithm that uses a particle filter. More precisely, we have chosen
a sample importance resampling (SIR) filter. For more details on particle filters, the
reader is referred to [17].

Each particle n in the filter represents a possible camera pose

Tn = [tX , tY , tZ , rotW , rotX , rotY , rotZ ]n, (1)

where t are the translations and rot is the quaternion for the rotation. T determines the
3D relation of the camera with respect to the world coordinate system. We have avoided



Video-Based Camera Tracking Using Rotation-Discriminative Template Matching 235

adding the velocity terms so as not to overload the particle filter (which would otherwise
affect the speed of the system).

For each video frame, the filter follows two steps: prediction and update. The prob-
abilistic motion model for the prediction step is defined as follows. The process noise
(also known as transition prior p(Tn(k)|Tn(k − 1)) ) is modelled with a Uniform dis-
tribution centred at the previous state Tn(k − 1) (frame k − 1), with variance q (process
noise’s -also called system noise- vector of hyper-parameters). The reason for this type
of random walk motion model is to avoid any assumption on the direction of the mo-
tion. This distribution enables faster reactivity to abrupt changes. The propagation for
the translation vector is

Tn(k)
∣∣
tX ,tY ,tZ

= Tn(k − 1)
∣∣
tX ,tY ,tZ

+ ut (2)

where ut is a random variable coming from the uniform distribution, particularised for
each translation axis. The propagation for the rotation is

Tn(k)
∣∣
rot

= urot × Tn(k − 1)
∣∣
rot

(3)

where × is a quaternion multiplication and urot is a quaternion coming from the uni-
form distribution of the rotation components. In the update step, the weight of each
particle n is calculated using its measurement noise (likelihood)

wn = p(Y |Tn), (4)

where wn is the weight of particle n and Y is the measurement. The key role of the
combination filter is to switch between two sorts of likelihood depending on the type
of measurement that is used: MC or FPC. Once the weights are obtained, these are
normalised and the update step of the filter is concluded. The corrected mean state T̂ is
given by the weighted sum of Tn. T̂ is used as output of the camera tracking system.

3.2 Marker-Based Cue (MC)

We use the marker-based system provided by [18] to calculate the transformation T
between the world coordinate frame and that of the camera (3D position and 3D orien-
tation). As explained in Section 3.4, this transformation is the measurement fed into the
filter for update.

At each frame, the algorithm searches for a square marker (see Figure 1) inside the
field-of-view (FoV).

If a marker is detected, the transformation can be computed. The detection process
works as follows. First, the frame is converted to a binary image and the black marker
contour is identified. If this identification is positive, the 6D pose of the marker relative
to the camera (T ) is calculated. This computation uses only the geometric relation of
the four projected lines that contour the marker in addition to the recognition of a non-
symmetric pattern inside the marker [18]. When this information is not available, no
pose can be calculated. This occurs in the following cases: markers are partially or
completely occluded by an object; markers are partially or completely out of the FoV;
or not all lines can be detected (e.g., due to low contrast).
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Fig. 1. Square marker used for the MC

3.3 Feature Point-Based Cue (FPC)

In order to constrain the camera pose estimation, the back-projection of feature points
in the scene can be used. For this purpose, both the 3D location of the feature point P
and the 2D back-projection p is needed. In homogeneous coordinates,

p = K · [R|t] · P, (5)

where K is the calibration matrix (computed off-line), R is the rotation matrix formed
using the quaternion rot and t = [tX , tY , tZ ]T is the translation vector.

Natural feature points in unprepared environments appear in objects at unknown
locations. Hence, the 3D location of feature points in the world coordinate frame is
generally unavailable. However, the combination framework proposed here admits a
certain preparation of the environment, this is, a marker is available. Since the world
coordinate frame is fixed to the marker and the real size of the marker is known, the
3D location of any point in the marker is known. We take advantage of this fact and
propose to use the corners as feature points in the scene.

Although we have proved in our previous work that these points provide a reliable
measurement for camera tracking [5], they might not always be available. For instance,
because a corner is occluded by an object or it is outside of the FoV. In this case, it is
interesting to have other feature points to rely on. As explained before, in order to con-
strain the camera pose, the 3D position of a feature point must be available. However,
the inverse procedure can also be done. Indeed, from Equation (5) one deduces that the
3D world coordinates of a point can be computed if the camera pose [R|t] is known.
Since the filter keeps an estimate of this pose, it is possible to calculate the 3D position
of feature points. Once this location is computed, a new feature point can be added to
the map of feature points that constrain the camera pose. This process is detailed in
[19].

The intensity level and gradient information are chosen as a description of the fea-
ture points, for further recognition. Each time a feature point is added to the map the
template of its neighbourhood is stored. At this time, rotated versions of this template
are generated. The orientation gradient is computed for each of these versions and the
information is summarised in a single robust orientation histogram. The final descriptor
of a feature point is composed by the histogram and the rotated templates. The amount
of rotated versions is proportional to the number of bins in the histogram.

At runtime, the feature points in the map are searched in the video frame. A region
is defined around the estimated location of each feature point. Assume, for the moment,
that those regions are known. Each region is matched with the corresponding descriptor.
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The result of this matching is a correlation score together with a bin-wise estimated
rotation, for each pixel inside the region. More precisely, the result indicates which
rotated version Θ(x, y) of the template gives the highest correlation Ψ(x, y) at each
pixel (x, y). Further details about the descriptor and the RDTM process can be found
in [6].

As explained in the next section, the set of correlation scores and estimated rotations
is the measurement fed into the filter for update. Each feature point that is positively
matched makes the filter converge to a more stable estimate. Three points are necessary
to robustly determine the six DoF. However, the filter can be updated even with only one
feature point. A reliable feature point might be unavailable in the following situations: a
point is occluded by an object; a point is outside of the FoV; the region does not contain
the feature point (due to a bad region estimation); or the point is inside the region but no
correlation is beyond the threshold (e.g., because the viewpoint is drastically changed).

3.4 Cues Combination

The goal of the system is to obtain a synergy by combining both cues. Individual weak-
nesses previously described are thus lessened by this combination. Special attention is
given to the occlusion and illumination problems in the MC and the drift in the FPC.

At initialisation, the value of all particles of the filter is set to the transformation
estimated by the marker-based cue TMC .

As long as the the marker is detected, the system uses the MC measurement to update
the particle filter (Y =MC). The likelihood is modelled with a Cauchy distribution
centered at the measurement TMC

p(TMC |Tn) =
∏

i

ri

π · ((Tn,i − TMC,i)2 + r2
i )

, (6)

where r is the measurement noise and i indexes the elements of the vectors. This par-
ticular distribution’s choice has its origin in the following reasoning. In the resampling
step of the filter, particles with insignificant weights are discarded. A problem may arise
when the particles lie on the tail of the measurement noise distribution. The transition
prior p(Tn(k)|Tn(k − 1)) determines the region in the state-space where the particles
fall before their weighting. Hence, it is relevant to evaluate the overlap between the
likelihood distribution and the transition prior distribution. When the overlap is small,
the number of particles effectively resampled is too small. Figure 2 shows an instance
of overlapping region. It must be pointed out that due to computing limits, some values
fall to zero even though their real mathematical value is greater than that (the support
of a Gaussian distribution is the entire real line). In the example of this figure, there is
no sufficient computed overlap for the Gaussian distribution (commonly used), whereas
the tail of the Cauchy distribution covers the necessary state-space. Therefore, we have
chosen a long-tailed density that better covers the state-space, while still being a realis-
tic measurement noise [20].

On the other hand, when the MC fails to detect the marker, the system relies on
the FPC (Y =FPC) and another likelihood is used. As a previous step to looking for
the new location of the feature points (see Section 3.3), it is necessary to calculate the
regions around the estimated location of each feature point. For each feature point, all
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Fig. 2. Overlap between transition prior distribution and the likelihood distribution: modelled
with a Gaussian (no overlap) and with a Cauchy distribution (thick line)

the back-projections given the transformations Tn are computed (see Eq. 5). The region
is the bounding box containing all these back-projections. These bounding boxes are
fed into the FPC and the matching results are obtained in return. The weights can then
be calculated. First, a set of 2D coordinates is obtained by thresholding Ψ(x, y).

Sj =
{
[cx, cy]

∣∣Ψj(cx, cy) > thcorr

}
, (7)

where j indexes the feature points mapped from the scene. Second, for each particle, a
subset is kept with the points in Sj that are within a certain Euclidean distance from the
corresponding back-projection [pn,x, pn,y]

Sn,j =
{
[cx, cy] ∈ Sj

∣∣dist(c, pn) < thdist

}
. (8)

Finally, the weight is computed. The weight of the particle n is proportional to the cor-
relation Ψj achieved in the subsets Sn,j . Furthermore, this is refined with the orientation
Θj estimated by the RDTM process. This orientation should have a rough correspon-
dence with the rotation of the camera about the Z axis. The more perpendicular is the
original template to the current pose of the camera, the higher the chances of the esti-
mated orientation being similar to the rotation about the Z axis. We take advantage of
this fact. Indeed, the weights are forced to be proportional also to the difference between
the orientation Θj and the rotation around the Z axis of the corresponding particles’s
state ψZ,n

wn = exp

⎛⎝ L∑
j=1

∑
[x,y]∈Sn,j

Ψj(x, y) · exp −
(

(ψZ,n − ψ̂Z,j) − Θj(x, y) · ∆

α · ∆

)2
⎞⎠ ,

(9)
where L is the number of feature points, ∆ = 360/N is the quantisation step of the
orientation according to the number of bins N (see Section 3.3), ψ̂Z,j is the rotation
of the camera at the initialisation of the feature point, and α is a tunable parameter.
Weighting the particles according to the correlation gives already a strong validation
for the data association between feature points and the point in the image plane where
they lie. Reinforcing this validation with the orientation permits to avoid confusion with



Video-Based Camera Tracking Using Rotation-Discriminative Template Matching 239

points with high correlation but unexpected orientation according to the camera’s pose.
Therefore, α can be tuned to vary this reinforcement of the data association. In our
case, this parameter is fixed to a high value (α = N/2) as the perpendicularity of the
camera with respect to the template of a feature point cannot be assured a priori. It is
also possible to make this parameter vary according to the angle of rotation in X and Y
axes, for instance α ∝

∑
|ψX,n − ψ̂X,j |+|ψY,n − ψ̂Y,j |. This option is not considered

for simplicity purposes.
As it can be seen, the likelihood for the FPC measurement is much less straightfor-

ward to compute than the MC. Nevertheless, the weights can be calculated indepen-
dently of the number of feature points recognised whereas the likelihood for the MC is
available only if the marker is visible.

Algorithm 1 expresses the process followed by the combination. It is assumed that
the filter has been initialised at the first detection of the marker. The description of the
marker is stored in the pattern variable.

Algorithm 1. Combination procedure.
loop
vframe ← getVideoFrame()
marker ← detectMarker( vframe )
if pattern.correspondsTo( marker ) then
TMC ← MC.calcTransformation( marker )
T̂ ← filter.updateFromMC( TMC )

else
reg ← filter.calcRegions()
for j = 1 to NumberOfFeaturePoints do
[Θj , Ψj ] ← RDTM( reg , vframe, descriptorsj )

end for
T̂ ← filter.updateFromFPC( Θj=1...L , Ψj=1...L )

end if
filter.findNewFeaturePoints( vframe )

end loop

This filtering framework has several advantages. Combination through a filter provides
a continuous estimate which is free of jumps that disturb the user’s interaction. Frame-
works often fall into static solutions giving little opportunity for shaping. The likelihood
switching method proposed is generic enough to be used with very different types of
cues or sensors such as inertial.

4 Experiments

In order to assess the performance of the camera tracking system, we have performed
several experiments. Two sequences are used. The first one is generated synthetically.
The second one is recorded with a hand-held camera. For the first one, the ground
truth is known whereas for the second one a qualitative measure is used. When the
camera position with respect to the world coordinate frame is known, it is possible to
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add virtual objects at a 3D position in the world coordinate space. This is generally
known as Augmented Reality. If the alignment between a virtual object and the real
scene is fixed, the object should move accordingly to the cameras motion as if it was
placed in the real world. A qualitative measure is found by observing how static a fixed
virtual object is with respect to the real world.

4.1 Evaluation of the Combination of Cues

An experiment is conducted to analyse the tracking performance in front of occlusions
of the marker. As stated before, one of our goals is to cope with the loss of track of the
MC when the marker is occluded. In our framework, tracking can continue by using
the FPC. Two techniques are compared in this case. On the one hand, ARToolkit [18],
which is equivalent to use the MC alone. On the other hand, our framework combining
MC and FPC.

Snapshots from several frames of the augmented sequence are shown in Fig. 3.

(a) Snapshots of a manual occlusion.

(b) Snapshots of a manual occlusion.

(c) Snapshots while the marker is escaping the field of view.

Fig. 3. Experiment with occlusions. A virtual teapot is placed on the marker to show correct
alignment. When the teapot is red, the framework uses the MC, whereas when it is green, the
framework relies on the FPC.

4.2 Evaluation of the RDTM for Camera Tracking

In [6], the RDTM method to recognise regions is described. This method is tailored to
match a template despite of a 2D rotation, as well as detect the rotation that the template
has undergone. In this paper, experiments have shown the accuracy of the method on
several images rotated over the perpendicular axis (2D rotations). We want to evaluate
here the improvement brought by the RDTMwhen compared to a simpler but commonly
used method [3,4,5].

Two feature point-based camera trackers with different matching techniques are
compared. In the first one, the recognition is performed with the Normalised Cross-
Correlation (NCC) of the templates. In the second one, matching of feature points
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Fig. 4. Experiment with different feature point recognition methods. Comparison between NCC
and RDTM. Absolute error of the translation and rotation in X,Y and Z axes (Renens sequence).

is done with our RDTM method. The experiment is conducted with the synthetic se-
quence.

Fig. 4 shows one instance of the absolute error of each axis of the compared tech-
niques.

Matching with NCC fails as soon as a large rotation around the Z axis occurs (around
frame 50). As a consequence, this tracker looses all references and starts to drift. On the
other hand, the rotation-discriminative method allows a continuous track of the feature
points and hence accurate camera pose estimation. Indeed, the Root Mean Square Error
achieved for the Z axis is very low: 0.79 degrees.

5 Conclusions

We have presented a combination of video-based camera trackers within a particle fil-
ter framework. The filter uses two cues provided by a marker-based approach and a
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feature point-based one. We introduce a novel use of a rotation-discriminative template
matching (RDTM) method for camera tracking.

Experiments show that the proposed combination produces a synergy. In particular
we have shown robustness in front of occlusions of the marker. Moreover, we have
demonstrated the convenience of using the RDTM by comparison to other commonly
used template matching.

In our future research, we will focus on extending the application of the RDTM
to scale invariance by exploiting the knowledge of the estimated distance between the
camera and the feature points.
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Abstract. Data association problem is of crucial importance to improve online
object tracking performance in many difficult visual environments. Usually, as-
sociation effectiveness is based on prior information and observation category.
However, some problems can arise when objects are quite similar. Therefore,
neither the color nor the shape could be helpful informations to achieve the task
of data association. Likewise, a problem can also arise when tracking deformable
objects, under the constraint of missing data, with complex motions. Such re-
striction, i.e. the lack in prior information, limit the association performance. To
remedy, we propose a novel method for data association, inspired from the evo-
lution of the object dynamic model, and based on a global minimization of an
energy. The main idea is to measure the absolute geometric accuracy between fea-
tures. Parameterless constitutes the main advantage of our energy minimization
approach. Only one information, the position, is used as input to our algorithm.
We have tested our approach on several sequences to show its effectiveness.

Keywords: Online data association, energy minimization, prior informationless
and non-rigid motion.

1 Introduction

Traditionally, multiple object tracking deals with the state estimation of moving objects.
A track is a state trajectory estimated from the available measurements that have been
associated with the same object [2]. The main difficulty comes from the assignment of
a given measurement to a object model. These assignments are generally unknown, as
are the true object models. The idea of data association remains to find a partition of
observations such that each element is generated by a object, or clutter, whose statistical
properties differ from one object to another. The literature contains some classical ap-
proaches: we can distinguish the deterministic approaches from the probabilistic ones.

Deterministic approaches select the best of several candidate associations, without
taking into account its context correctness, by using a score function [2]. The sim-
plest deterministic method for data association is the Nearest-Neighbor Standard Filter
(NNSF) [6] that selects the closest validate measurement to a predicted object and uses
it for its state estimation. Usually, the distance measure used is the Mahalanobis one.
Since the filter does not take into account the possibility of incorrect associations, the
performance of this filter might be poor in some cases, resulting in an incorrect asso-
ciation between measurements and objects. In some tracking applications, the color is

J. Braz et al. (Eds.): VISIGRAPP 2007, CCIS 21, pp. 244–257, 2008.
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exploited for the problem of data association. One can measure the color histogram
difference between a measurement and the objects of the previous frame using the his-
togram intersection technique. Unfortunately, the color metric is not sufficient for a
correct data association in many cases: for deformable objects, which color distribution
may differ from one frame to another, or in case of several quite identical objects.

Probabilistic approaches are based on posterior probability and make an associa-
tion decision using the probability error [3]. Among probabilistic approaches, we can
cite the most general one, called Multiple Hypothesis Tracking (MHT) [2]. In MHT,
the multiple hypotheses are formed and propagated, implying the calculation of ev-
ery possible hypothesis. Due to the exploring of a high-dimensional joint state space,
this method is computational intensive. Another strategy for multiple object tracking
association is the Probability Data Association Filter (PDAF) [3], that assigns an as-
sociation probability to each measurement and uses these probabilities to weight the
measurements for track update. The original PDAF formulation has some limitations:
it assumes that all measurements come from the track being updated, that is not true
in case of dense object conditions. The Joint Probability Data Association (JPDA) [8]
uses a weighted sum of all measurements near the predicted state, each weight corre-
sponding to the posteriori probability for a measurement to come from a object. JPDAF
provides an optimal data solution in the Bayesian framework. However, the number of
possible hypothesis increases rapidly with the number of objects, requiring prohibitive
amount of time calculating.

Generally, an effective data association method is based on prior information and
observation category. Once we have a lack of prior information, that can happen when
the observer has no information concerning the system, the association task becomes
difficult. Such cases can occur when the observed system is deformable, moreover,
when we observe with minor information about the movement, multiple objects that
are quite similar even non distinguishable. It could be more complicated if we have a
considerable interval of time between observations and where the observer has no prior
information about object’s motion. Likewise, if we only observe object position, we
can meet the case where a measurement is equidistant from several objects: all object
association probabilities are relatively the same and it is difficult to associate the good
measurement with the good object. As far as, no association method can handle all the
cases illustrated previously.

In this paper, we propose a novel method for data association based on minimization
of an energy magnitude E and adapted to the circumstances described previously. This
energy, inspired from object motion, measures the geometric accuracy between features
and associates measurement y (given by sensor) with object k if (Ek)y is minimized. The
main advantages of this energy are followed. It does not require parameters, does not need
prior knowledge and does not a time-consumer. Exclusively one information about object
is used: its position. Besides, it can handle theproblem ofassociation when ameasurement
falls within the validation regions for several objects and is equidistant from them.

The outline of this paper is as follows. In section 2, we expose the energy minimiza-
tion approach, derive its geometrical representation and its mathematical model. The
proposed method is then evaluated and tested on several sequences in section 3. Finally,
concluding remarks and perspective works are given in section 4.
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2 Energy Association Filter (EAF)

We first need to define some terms that will be often used in this paper. We dispose a
video sequence describing a dynamical scene. It is observed by a set of sensors, each
one can deliver exactly one observation at a precise time step t. Each observation con-
tains at least one measurement: a position. The number of available measurements can
differ from one observation to another. Each measurement can be associated with a
specific object in the scene (i.e. object), or can be a false alarm. At a specific time
t, observations are assumed to be available from Nobs sensors. The set of observations
coming from all sensors is given by y = (y1, ...,yNobs), where yi = (yi

1, ...,y
i
Mi) is the

vector containing the Mi measurements coming from the ith sensor, also called observa-
tion. We suppose that each sensor can generate at most one observation, containing at
least one measurement at a particular time step and that the number of measurements
delivered by the sensors varies with time. When an observation is available, our goal is
to associate a maximum one measurement per object. The total number of objects is K.

2.1 Energy Minimization Modelling

Generally, an effective data association method is based on measurements category.
When the measurement is limited to the position, and falls inside the validation region
of several objects and is equidistant from them (see Figure 1.(a)), it will be associated
with all these objects if we use the NNSF or Monte Carlo JPDAF approaches. As well
as, in multiple object tracking, feature objects can be quite similar. Accordingly, even
if information about their color distribution or shape is available, the association task is
difficult under such assumptions or impossible in case of complex dynamics.

In this paper, we propose an algorithm for data association restricted to one category
of measurement: the position. Furthermore, we affirm the total lack of prior informa-
tion concerning objects: exclusively the two anterior predicted positions are used. We
will first give the concept of our approach before starting its mathematical modeling.
Our intention is to formalize a method able to associate a measurement according to
the restrictions displayed in section 1. We define a novel energy E inspired from the
object’s dynamic evolution. The dynamic model is described in terms of displacements
in the object space (x,y). If we only consider the linear translation in one direction, the
problem of data association is limited to the computation of the Mahalanobis distance
energy E1 (see after for details). Thus, in case of complex dynamics such as non linear
displacements, oscillatory motions and non-constant velocities, we are vis-a-vis a prob-
lem because E1 will be an inadequate informative source. To remedy, we incorporate a
second energy E2 which measures the absolute accuracy between the dynamic features
and indicates how much their parameters are close. Moreover, we distinguish some dy-
namic cases, that will be clarified by geometric descriptions afterward, where we need
to compensate E2 by the proximity energy evolution E3 for a better association of te
available data.

The energy E is only computed when the measurement falls within several validation
regions. We consider a measurement as a clutter if it is not included in any validation
region. In our case, the validation region is an ellipsoid that contains a given probability
mass under the Gaussian assumption. The minor and major axes of this ellipsoid are
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respectively given by the largest and smallest eigenvalues of the covariance matrix,
their directions are given by the corresponding eigenvectors, and the center is the mean
of the object.

We define the energy between the kth object (k = 1, . . . ,K) and the measurement yi
j,

i.e. jth measurement of the ith sensor, by:

(Ek)yi
j
=

1√
3

3

∑
l=1

αl(El
k)yi

j
(1)

where αl = 1
∑K

k=1 ||(El
k)yi

j
|| is a weighted factor introduced to sensibly emphasize the rela-

tive importance attached to the energy quantities El .
Before interpreting each energy, we consider an object A and a measurement yi

j.
Besides, we call (see Figure 1 for illustration):

– Â(t − 2), Â(t − 1), Â(t) and Â1(t + 1): prediction of A at t − 2, t − 1, t and t + 1 by
using the initial dynamic model;

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 1. (a) Measurement yi
j falls inside the two validation regions of A and C; (b-c-f) Visualize

the intersection surfaces {S1,S2,S}; (d-e) Project the difference between the sufaces S1 and S2
extracted from two dynamical model; (g) Shows the intersection surfaces where two predictions
at instant t, Â1 and Â2, are equidistant from yi

j
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– Â2(t +1): prediction of A at t +1 by using the updated dynamic model. In this case,
the measurement yi

j is associated with the object A at instant t and the parameters
of the dynamic model are updated according to yi

j.

Prediction is based on the use of a dynamic model which parameters are generally
fixed by learning from a training sequence to represent plausible motions such as con-
stant velocity or critically damped oscillations [4, 5]. For complex dynamics, such as
non-constant velocities or non-periodic oscillations, the choice of the parameters for an
estimation algorithm is difficult. Furthermore, the learning step becomes particularly
more difficult in the case of missing data, where the dynamic between two successive
observations is unknown. For these reasons, the parameters of our dynamic model are
set in an adaptive and automated way once a measurement is available [1].
The energy (Ek)yi

j
contains three components, {E1,E2,E3}, as defined below:

1. The Mahalanobis distance energy, (E1
k )yi

j
, measures the distance between a mea-

surement yi
j occurred at instant t and the prediction of the object A at t − 1. This

energy is sufficient to associate the available measurement if the object’s motion is
limited to translation in one direction (case of linear displacement). It is given by:

(E1
k )yi

j
=

√
(yi

j − Â(t − 1))T Σ̂−1
k (yi

j − Â(t − 1))

where Σk is the innovation covariance of the kth object (we designe the kth object by
A in the equation).

2. To consider the case of complex dynamics, such as oscillatory motions or non-
constant velocities, we have added the absolute accuracy evolution energy (E2

k )yi
j
. It

introduces the notion of the geometric accuracy between two sets of features whose
dynamic evolution is different. The description of both models are followed:

– The updated dynamic model set considers that the available measurement yi
j at

t is generated by the kth object and updates the parameters of its dynamic model
to predict the new state of the object k at t + 1;

– The not updated dynamic model set predicts the new state at t +1 without con-
sidering the presence of the measurement, i.e. without updating the parameters
of the dynamic model.

(E2
k )yi

j
extends a numerical estimation of the closeness between two dynamic

model. Our idea aims to evaluate the parameters of the dynamic model in two cases
if the measurement yi

j arises from this object or no. We first predict the states Â1(t +
1) and Â2(t +1) of the object at t +1. We then determine S1, the intersection surface
between the two circumscribed circles of the triangles (Â(t −2), Â(t −1), Â(t)) and
(Â(t −1), Â(t), Â1(t +1)), and S2, the intersection surface between the two circum-
scribed circles of the triangles (Â(t − 2), Â(t − 1),yi

j) and (Â(t − 1),yi
j, Â2(t + 1)),

(see Figures 1.(b-c)). (E2
k )yi

j
is minimized when the similarity between both dy-

namic models is maximized and is given by:

(E2
k )yi

j
= |S1 − S2| (2)
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We compare these two sets to measure the ratio of similarity, defined by Rs = 1 −
(E2

k )yi
j
, between the predictions at t + 1 given by two different dynamic models for

object k. Increasing this ratio maximizes the probability that the measurement yi
j is

generated by object k and the resemblance between two dynamic models.
A question might be asked: is the component E2 able to handle all type of mo-

tions?
Indeed, E2 evaluates a numerical measure of similarity between dynamic mod-

els. This measurement depends on the difference between two surfaces. It is con-
sidered as reliable if both positions, Â(t) and yi

j, are on the same side comparing to

axis (Ât−2Ât−1), see Figure 1.(d). In Figure 1.(e), we show the case where both sur-
faces, S1 and S2, are quite similar, which imply E2 to be null. This case can occur
when the position of Â(t) and yi

j are diametrically opposite or when their positions

are in different side comparing to axis (Ât−2Ât−1). In such cases, the energy E2 is
not a sufficient informative source to achieve the task of association. To compensate
this energy, we incorporate the third energy E3.

3. The proximity energy evolution, (E3
k )yi

j
, is the inverse of the surface S defined by the

common area between the two triangles (Â(t −2), Â(t −1),yi
j) and (Â(t −2), Â(t −

1), Â(t)) (see the dotted area of Figure 1.(f)). This energy evaluates the absolute ac-
curacy between the prediction Â(t) and the measurement yi

j at instant t. Increasing
S means that the prediction and measurement at instant t are close. This energy is
given by:

(E3
k )yi

j
=

1
S

(3)

Another question could be asked: why we use the intersection surface instead of
only calculating the distance between the measurement yi

j and the prediction of
object’s position at instant t?

In Figure 1.(g), we have two predictions at instant t, Â1 and Â2. They are both
equidistant from the measurement yi

j. If we only compute the distance to mea-
sure the proximity energy, we will get that both models have the same degree
of similarity with the initiation model defined by the dynamic model of points
(Â(t − 2), Â(t − 1),yi

j). This result leads to a contradiction with the reality. This
problem can be explained by the fact that if they have both the same degree of
similarity with the third dynamic model, we can conclude that their corresponding
objects have the same dynamic. For this reason, we have chosen to evaluate the
similarity by extracting the intersection surface between triangles. We can remark
in Figure 1.(g) that these intersection surfaces are very different, which leads to a
different measure in the degree of similarity.

Finally, the measurement yi
j is associated with the object k if its energy magnitude is

minimized:

Yyi
j→k =

⎧⎨⎩ min
k=1,...,K

⎛⎝ 1√
3

√√√√ 3

∑
l=1

α2
l (E

l
k)

2
yi

j
)

⎞⎠⎫⎬⎭
with 0 ≤ αl ≤ 1 and 0 ≤ (Ek)yi

j
≤ 1.
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We have described a novel approach for data association based on the minimization
of an energy magnitude whose components are extracted from geometrical representa-
tions (area and distance) constructed with measurement, previous states and predictions.
The purpose of choosing a geometrical definition for these energies refers to:

– show the geometrical continuity of the system between predictions and previous
states using two different dynamic models;

– measure the similarity between predictions, at a particular time for the same object,
using two different dynamic models, that logically must be quite similar because
they represent the same system.

3 Experimental Results

3.1 Synthetic Test

To expose the performance of our energy minimization approach, we suggest the syn-
thetic example of figure 2, which explores the case of oscillatory motion with a constant
phase. It shows two objects T1 and T2 whose dynamic models are defined by two dif-
ferent sinusoids, sin(x) and sin(2x)+0.5. The measurement y (full square in Figure 2),
is equidistant from both objects and falls in their validation regions. In such case, both
objects are candidates to be associated with this measurement. We compute the energy
magnitude for each object (see Table 1) and obtain that (E1)y < (E2)y and the measure-
ment is associated with T1.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-4 -3 -2 -1  0  1  2  3

T1
T2

Prediction without observation for T1
Prediction without observation for T2

Observation at instant t
Prediction with observation for T1
Prediction with observation for T2

Fig. 2. Sinusoids with a constant phase: the dotted lines represent the trajectories of objects T1
and T2. The full square is the measurement y. The dotted squares and blue stars are the prediction
of T2 and T1 at instants {t +1,t +2} without taking into account the presence of the observation.
The dotted and full circles are the prediction of T1 and T2 if we consider that the observation is
associated with both objects.

We give another example where the motion of both objects is given by a sinusoid with
a non periodic phase, see Figure 3. At instant t −1, both objects have the same position
as shown in Figure 3. If we use the NNSF method, the measurement will be associated
with both objects since it is equidistant from them. To improve the association result,
we compute the energy magnitude for each object and the results are in Table 2. We
obtain (E1)y < (E2)y and the measurement is associated with T1.
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Table 1. Energy magnitude computed for objects T1 and T2

k αi(Ei
k)y (Ek)y

1 0.5 0.0001 0.4821 0.5278
2 0.5 0.9999 0.5179 0.9362

Fig. 3. Sinusoids with non-constant phase: the dotted lines represent the trajectories of objects;
the shapes (square, circle, triangles) are their predictions at different instant

3.2 Van-Plane Test

In the following experiment, the available observation at instant t contains two mea-
surements M1 and M2, each one represents a position in the object space (x,y). The first
row in Figure 4 contains the frames at {t − 2,t − 1,t} where two objects {T1,T2}, the
van and the plane, are present. If we look at the position of these measurements on the
real frame at t (right image in Figure 4), we observe that M1 is closed to T1 and M2 to
T2. In the second and third rows, we show the prediction of both objects by evaluating
two different dynamic model in the object space (x,y). We point out that the horizontal
and the vertical axis of the frame are represented by the y-axis and x-axis in the object
space. We can remark that the distance from T1 to M1 is larger than the one from T1 to
M2, see the Mahalanobis distance energy α1(E1

1){M1,M2} in Table 3. Hence, if we use
the Nearest Neighbor association method, the object T1 will be associated to M2 which
causes a contradiction with the reality. To remedy, we compute the energies E2 and E3

which compensate E1. Using the energy minimization approach, we obtain that the en-
ergies magnitude are minimized when M1 and M2 are respectively associated to objects
T1 and T2 (see Table 3).

3.3 Walking Men Test

The ”Walking men” sequence shows three close men walking at intant t −2, Figure 6.a.
At t −1, two men (T2 and T3) continue in the same direction and the third one (T1) takes
the opposite direction, Figure 6.b.

The available observation at t contains three measurements given by a position in the
object space (x,y). In Figure 6.c, we show the corresponding frame at instant t where we
observe a partial occlusion between two walking men. We have put the measurements
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Table 2. Energy magnitude computed for objects T1 and T2

k αi(Ei
k)y (Ek)y

1 0.5 0.0970 0.3094 0.3441
2 0.5 0.9030 0.6906 0.7170

Fig. 4. Van Plane test: In the first row: left and middle image represent the frames at {t −2,t −1}
where two objects {T1,T2} are present; right image is the real frame at t. The available observation
at t contains two measurements {M1,M2}. In the second and third rows, we show the position of
both objects at different instants.

Table 3. Energy magnitude computing for both objects when the measurements {M1,M2} are
associated with them

k αi(Ei
k)M1 (Ek)M1

1 0.3141 0.02 0.3429 0.2687
2 0.6858 0.98 0.6571 0.7879

k αi(Ei
k)M2 (Ek)M2

1 0.3179 0.7236 0.8636 0.6759
2 0.6821 0.2764 0.1364 0.4322

in Table 4 in a way that the measurement Mi is generated by the object Ti. We notice
that the observed positions of the cross men are very near. Figure 6.d represents the
real frame at instant t + 1 where we remark that the cross men change their directions.
We remark from Table 4 that the measurement M2 is equidistant from objects T2 and
T3 (α2(E2

2 )M2 = α2(E2
3 )M2 = 0.15). We also remark from Table 4 that most of time the
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a b

c d

Fig. 5. Walking men test: (a) Frame at t −2 where we have three men close one to the other; (b)
Frame at t − 1 where two men continue in the same direction and the third takes the opposite
direction; (c) The observation at t where two men cross and we have a partial occlusion between
them; (d) Frame at t +1 where the cross men change their directions

Table 4. Energy magnitude computing for objects k when measurements Mi are associated with
them

k αi(Ei
k)M1 (Ek)M1

1 0.144 0.03 0 0.085
2 0.411 0.82 0 0.53
3 0.444 0.16 0 0.47

k αi(Ei
k)M2 (Ek)M2

1 0.70 0.16 0.5 0.51
2 0.15 0.22 0.5 0.32
3 0.15 0.62 0 0.37

k αi(Ei
k)M3 (Ek)M3

1 0.63 0.0037 0 0.363
2 0.21 0.76 0 0.455
3 0.16 0.235 0 0.16

third energy is null, this effect is due to the presence of a linear movement (motion
limited to a displacement in two directions x and y). Once the energies are computed,
we obtain the energy magnitude (Ei) is minimized when measurement Mi is associated
to object Ti, see the column of (Ek)Mi in Table 4. Despite the change in illumination,
the measurements were correctly associated to objects by using the approach of energy
minimization.

3.4 Window Men Test

In this sequence, at instant t −2 we have two objects where the first does not move and
the second undergoes a linear movement, Figure 6.a. At instant t − 1, only the second
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a b

c d

Fig. 6. Window men test: (a) Frame at t − 2 where two objects are present; (b) Frame at t − 1
where both objects are near; (c) the available observation at t; (d) Frame at intant t where both
objects move

object continues to move and approaches from the first one, Figure 6.b. At instant t, an
observation containing two measurements,defined by positions, is available. Figure 6.c
represents its corresponding frame. Notice that the observed positions are near and there
is a partial occlusion between both objects. In Table 5, we have the distance from mea-
surement M2 to object T1 is less then the distance from M2 to T2, (E1

1 )M2 < (E1
2)M2 ,

which leads to a contradiction with the reality. We compute the second energy to com-
pensate the first one. The third energy is null due to the linear displacement that have
both objects. As we can remark from Table 5, the energies magnitude (Ek)M1 and (Ek)M2

are minimized when M1 and M2 are associated to T1 and T2 respectively. We remark that
our approach of energy minimization gives a correct association in spite of the presence
of light reflexion on the window.

Table 5. Energy magnitude computing for objects k when measurements Mi are associated with
them

k (Ei
k)M1 αi(Ei

k)M1 (Ek)M1

1 0 0 0 0 0 0 0
2 0.0607 6.2 0 1 1 0 0.82

k (Ei
k)M2 αi(Ei

k)M2 (Ek)M2

1 0.0217 0.36 0 0.3 0.83 0 0.51
2 0.0518 0.07 0 0.7 0.16 0 0.42

3.5 Ant Sequence Test

We have tested our method on another sequence where ant’s motion is complex. They
move with a non-constant velocity and can accelerate, decelerate and sometimes stop
moving or starting. These ants are quite similar even non-distinguishable and charac-
terized by the same gray level distribution. The sensor, at instant t, provides an ob-
servation containing six measurements corresponding to positions in the (x,y) space. In
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a b

c d

Fig. 7. Ants sequence: frames {10,25,35,45}. (a-b) Acquisitions at t −2 and t −1; (c) Available
observation at t; (d) Frame at t +1.

such scene, only one information could be used: the motion. We remark from Fig-
ure 7 that their displacement is erratic. The ants change their direction, accelerate,
decelerate, stop moving, do rotation around their axis, etc. Figure 7.(a-b) are the ac-
quisitions at instant t − 2 and t − 1 and represent the frames 10 and 25 of the ant se-
quence. We remark there is a considerable interval of time between these two frames.
We have labeled the ants just to show their displacements from one frame to another.
Figure 7.c shows the available observation at t and represents the frame 35 from the
sequence. Figure 7.d is the real frame at t + 1. Table 6 contains the numerical val-
ues of all energies between measurements and objects. We have multiplied each one
by 100 to show clearly the difference between them. We have also fixed the order
of classification in Table 6 so that the measurement Mi is provided from object Ti. If
we use the Nearest Neighbor to associate the available observation, the measurements
{M2,M4,M5} will be respectively associated to {T4,T2,T2} which leads to a contra-
diction with the reality (see the energy α1(E1

k )Mi in Table 6). To remedy, we associate
our observation by using the energy minimization approach. We remark from Table 6
that the energies α2(E2

2 )M2 < α2(E2
4 )M2 and α3(E3

2 )M2 < α3(E3
4 )M2 which compen-

sate the error given by α1(E1
2 )M2 . Finally, the following result is obtained: (Ek)M2 is

minimized when M2 is associated with object T2. We recite that a measurement is as-
sociated with a object if the magnitude of its energy is minimal (equation 4). Lets take
another example to show the necessity of using the energy E3 in our formulation to
compensate the others one. If we only use the energies α1(E1

k )Mi and α2(E2
k )Mi to as-

sociate data, we will get the following result: (E6)M5 < (E5)M5 and the measurement
M5 will be associated with object T6 which leads to an error in association. We can
remark from Table 6 that α3(E3

5 )M5 < α3(E3
6 )M5 which compensate the other energies.

Finally, we observe that each measurement is well associated with its corresponding
object. We notice that our approach is not a time-consumer. The total time of com-
putation of all these energies is 0.25 seconds. We have used matlab to implement our
method.
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Table 6. First column and first row contain ant’s numbers and measurement’s numbers. The
energies magnitude are multiplied by 100.

α1(E1
k )Mi ×100

1 2 3 4 5 6
1 6.512 47.239 25.761 43.975 48.705 46.618
2 22.545 5.762 21.381 6.498 2.510 12.014
3 15.105 24.891 4.043 17.747 23.748 19.693
4 21.447 1.728 21.604 9.403 5.444 10.209
5 18.317 6.094 17.943 12.191 9.276 5.953
6 16.074 13.549 9.268 10.923 10.318 5.513

α2(E2
k )Mi ×100

1 2 3 4 5 6
1 1.487 1.848 1.424 1.081 11.276 1.091
2 3.096 1.234 3.091 9.610 54.460 1.583
3 14.168 0.234 0.343 0.160 1.256 0.107
4 6.564 2.211 2.669 0.307 24.120 4.400
5 74.366 85.842 92.240 96.185 6.993 92.438
6 0.320 0.255 0.233 1.032 1.895 0.381

α3(E3
k )Mi ×100

1 2 3 4 5 6
1 0.037 45.813 0.792 14.091 48.144 43.240
2 6.801 0.014 24.593 0.225 14.570 13.635
3 22.205 8.488 1.783 5.637 4.657 24.499
4 38.757 14.837 27.829 0.708 17.822 12.073
5 8.457 10.537 12.624 3.231 4.048 6.203
6 23.743 20.101 32.380 76.319 10.759 0.350

(Ek)Mi ×100
1 2 3 4 5 6

1 3.856 38.008 14.903 26.668 40.071 36.715
2 13.713 3.402 18.899 6.699 32.580 10.532
3 17.530 15.184 2.559 10.751 13.991 18.148
4 25.853 8.718 20.399 5.447 17.598 9.475
5 44.487 50.057 54.741 56.008 7.103 53.600
6 16.555 13.996 19.446 44.516 8.676 3.197

4 Conclusions

This work proposes a new method for data association based on an energy minimiza-
tion. The developed approach can handle complex motions and highly non-linear sys-
tems, and deals with the lack of of prior knowledge. Its effectiveness returns to the
fact it requires few parameters. The geometric illustration of energy components allows
to measure the accuracy between two dynamic models and to define their degree of
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similarity. As a perspective for this work, we suggest to integrate the energy minimiza-
tion approach within the classical particle filter to build a new framework for multiple
tracking objects. Moreover, since we consider erratic motions that cannot be learned
from training sequences, we suggest to use an adaptive and automated way to set the
parameters of the dynamic model of the filter. The purpose of developing this frame-
work is to track objects under the restriction of the missing of prior information and
especially when similar objects are evolving in the scene. This phase currently is under
development.
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